These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 31129744)
41. Unveiling DNA Translocation in Pristine Graphene Nanopores: Understanding Pore Clogging via Polarizable Simulations. H H; Mallajosyula SS ACS Appl Mater Interfaces; 2023 Nov; 15(47):55095-55108. PubMed ID: 37965826 [TBL] [Abstract][Full Text] [Related]
42. Gate-Voltage-Controlled Threading DNA into Transistor Nanopores. Kato Y; Sakashita N; Ishida K; Mitsui T J Phys Chem B; 2018 Jan; 122(2):827-833. PubMed ID: 28893067 [TBL] [Abstract][Full Text] [Related]
43. Statistics of DNA capture by a solid-state nanopore. Mihovilovic M; Hagerty N; Stein D Phys Rev Lett; 2013 Jan; 110(2):028102. PubMed ID: 23383940 [TBL] [Abstract][Full Text] [Related]
44. Origins and consequences of velocity fluctuations during DNA passage through a nanopore. Lu B; Albertorio F; Hoogerheide DP; Golovchenko JA Biophys J; 2011 Jul; 101(1):70-9. PubMed ID: 21723816 [TBL] [Abstract][Full Text] [Related]
45. Precise DNA Concentration Measurements with Nanopores by Controlled Counting. Charron M; Briggs K; King S; Waugh M; Tabard-Cossa V Anal Chem; 2019 Oct; 91(19):12228-12237. PubMed ID: 31438671 [TBL] [Abstract][Full Text] [Related]
46. Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene. Prasongkit J; Feliciano GT; Rocha AR; He Y; Osotchan T; Ahuja R; Scheicher RH Sci Rep; 2015 Dec; 5():17560. PubMed ID: 26634811 [TBL] [Abstract][Full Text] [Related]
47. Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA. Belkin M; Chao SH; Jonsson MP; Dekker C; Aksimentiev A ACS Nano; 2015 Nov; 9(11):10598-611. PubMed ID: 26401685 [TBL] [Abstract][Full Text] [Related]
48. Slowing down DNA translocation through a nanopore in lithium chloride. Kowalczyk SW; Wells DB; Aksimentiev A; Dekker C Nano Lett; 2012 Feb; 12(2):1038-44. PubMed ID: 22229707 [TBL] [Abstract][Full Text] [Related]
49. Design and Simulation of a DNA Origami Nanopore for Large Cargoes. Khosravi R; Ghasemi RH; Soheilifard R Mol Biotechnol; 2020 Sep; 62(9):423-432. PubMed ID: 32623634 [TBL] [Abstract][Full Text] [Related]
50. Using a Péclet number for the translocation of a polymer through a nanopore to tune coarse-grained simulations to experimental conditions. de Haan HW; Sean D; Slater GW Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022601. PubMed ID: 25768522 [TBL] [Abstract][Full Text] [Related]
51. Nanopore translocation dynamics of a single DNA-bound protein. Spiering A; Getfert S; Sischka A; Reimann P; Anselmetti D Nano Lett; 2011 Jul; 11(7):2978-82. PubMed ID: 21667921 [TBL] [Abstract][Full Text] [Related]
52. Design Principles of DNA-Barcodes for Nanopore-FET Readout, Based on Molecular Dynamics and TCAD Simulations. Voorspoels A; Gevers J; Santermans S; Akkan N; Martens K; Willems K; Van Dorpe P; Verhulst AS J Phys Chem A; 2024 May; 128(19):3926-3933. PubMed ID: 38712508 [TBL] [Abstract][Full Text] [Related]
53. Computational investigation of geometrical effects in 2D boron nitride nanopores for DNA detection. Zhang Y; Zhou Y; Li Z; Chen H; Zhang L; Fan J Nanoscale; 2020 May; 12(18):10026-10034. PubMed ID: 32367083 [TBL] [Abstract][Full Text] [Related]
54. Dynamics of polymer translocation through kinked nanopores. Wang J; Wang Y; Luo K J Chem Phys; 2015 Feb; 142(8):084901. PubMed ID: 25725751 [TBL] [Abstract][Full Text] [Related]
55. Controllable and reversible DNA translocation through a single-layer molybdenum disulfide nanopore. Si W; Zhang Y; Sha J; Chen Y Nanoscale; 2018 Nov; 10(41):19450-19458. PubMed ID: 30311618 [TBL] [Abstract][Full Text] [Related]
56. Ionic current modulation from DNA translocation through nanopores under high ionic strength and concentration gradients. Zhang Y; Wu G; Si W; Ma J; Yuan Z; Xie X; Liu L; Sha J; Li D; Chen Y Nanoscale; 2017 Jan; 9(2):930-939. PubMed ID: 28000822 [TBL] [Abstract][Full Text] [Related]
57. Molecular dynamics simulations of DNA within a nanopore: arginine-phosphate tethering and a binding/sliding mechanism for translocation. Bond PJ; Guy AT; Heron AJ; Bayley H; Khalid S Biochemistry; 2011 May; 50(18):3777-83. PubMed ID: 21428458 [TBL] [Abstract][Full Text] [Related]
58. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array. Fuller CW; Kumar S; Porel M; Chien M; Bibillo A; Stranges PB; Dorwart M; Tao C; Li Z; Guo W; Shi S; Korenblum D; Trans A; Aguirre A; Liu E; Harada ET; Pollard J; Bhat A; Cech C; Yang A; Arnold C; Palla M; Hovis J; Chen R; Morozova I; Kalachikov S; Russo JJ; Kasianowicz JJ; Davis R; Roever S; Church GM; Ju J Proc Natl Acad Sci U S A; 2016 May; 113(19):5233-8. PubMed ID: 27091962 [TBL] [Abstract][Full Text] [Related]
59. Molecular Transport across the Ionic Liquid-Aqueous Electrolyte Interface in a MoS Shankla M; Aksimentiev A ACS Appl Mater Interfaces; 2020 Jun; 12(23):26624-26634. PubMed ID: 32393017 [TBL] [Abstract][Full Text] [Related]
60. Ionic transport through a protein nanopore: a Coarse-Grained Molecular Dynamics Study. Basdevant N; Dessaux D; Ramirez R Sci Rep; 2019 Oct; 9(1):15740. PubMed ID: 31673049 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]