BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31129861)

  • 1. Following of aging process in a new motor skill learning model, "pot jumping" in rats.
    Ernyey AJ; Grohmann Pereira T; Kozma K; Kouhnavardi S; Kassai F; Gyertyán I
    Geroscience; 2019 Jun; 41(3):309-319. PubMed ID: 31129861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor skill learning and offline-changes in TGA patients with acute hippocampal CA1 lesions.
    Döhring J; Stoldt A; Witt K; Schönfeld R; Deuschl G; Born J; Bartsch T
    Cortex; 2017 Apr; 89():156-168. PubMed ID: 27890324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related decline of various cognitive functions in well-experienced male rats treated with the putative anti-aging compound (2R)-1-(1-benzofuran-2-yl)-N-propylpentane-2-amine ((-)BPAP).
    Ernyey AJ; Kassai F; Kozma K; Plangár I; Somfai Z; Miklya I; Gyertyán I
    Geroscience; 2024 Feb; 46(1):417-429. PubMed ID: 37306892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is procedural memory relatively spared from age effects?
    Churchill JD; Stanis JJ; Press C; Kushelev M; Greenough WT
    Neurobiol Aging; 2003 Oct; 24(6):883-92. PubMed ID: 12927770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging increases the susceptibility to motor memory interference and reduces off-line gains in motor skill learning.
    Roig M; Ritterband-Rosenbaum A; Lundbye-Jensen J; Nielsen JB
    Neurobiol Aging; 2014 Aug; 35(8):1892-900. PubMed ID: 24680325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Procognitive profiling of a serotonin 5-HT
    Gyertyán I; Kassai F; Kozma K; Kitka T; Ernyey AJ
    Brain Res Bull; 2020 Dec; 165():238-245. PubMed ID: 33086133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of general learning ability factor in a rat test battery measuring a wide spectrum of cognitive domains.
    Kassai F; Ernyey AJ; Kozma K; Plangár I; Gyertyán I
    J Integr Neurosci; 2022 Jan; 21(1):12. PubMed ID: 35164448
    [No Abstract]   [Full Text] [Related]  

  • 8. Visuospatial function predicts one-week motor skill retention in cognitively intact older adults.
    Lingo VanGilder J; Hengge CR; Duff K; Schaefer SY
    Neurosci Lett; 2018 Jan; 664():139-143. PubMed ID: 29154858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Region and task-specific activation of Arc in primary motor cortex of rats following motor skill learning.
    Hosp JA; Mann S; Wegenast-Braun BM; Calhoun ME; Luft AR
    Neuroscience; 2013 Oct; 250():557-64. PubMed ID: 23876329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of motor skill and instrumental learning time scales in a skilled reaching task in rat.
    Buitrago MM; Ringer T; Schulz JB; Dichgans J; Luft AR
    Behav Brain Res; 2004 Dec; 155(2):249-56. PubMed ID: 15364484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sleep spindles: a physiological marker of age-related changes in gray matter in brain regions supporting motor skill memory consolidation.
    Fogel S; Vien C; Karni A; Benali H; Carrier J; Doyon J
    Neurobiol Aging; 2017 Jan; 49():154-164. PubMed ID: 27815989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Children's initial sleep-associated changes in motor skill are unrelated to long-term skill levels.
    Zinke K; Wilhelm I; Bayramoglu M; Klein S; Born J
    Dev Sci; 2017 Nov; 20(6):. PubMed ID: 27747974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related changes in brain deactivation but not in activation after motor learning.
    Berghuis KMM; Fagioli S; Maurits NM; Zijdewind I; Marsman JBC; Hortobágyi T; Koch G; Bozzali M
    Neuroimage; 2019 Feb; 186():358-368. PubMed ID: 30439511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does sleep promote motor learning? Implications for physical rehabilitation.
    Siengsukon CF; Boyd LA
    Phys Ther; 2009 Apr; 89(4):370-83. PubMed ID: 19201986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor learning transiently changes cortical somatotopy.
    Molina-Luna K; Hertler B; Buitrago MM; Luft AR
    Neuroimage; 2008 May; 40(4):1748-54. PubMed ID: 18329289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations in the thickness of motor cortical subregions after motor-skill learning and exercise.
    Anderson BJ; Eckburg PB; Relucio KI
    Learn Mem; 2002; 9(1):1-9. PubMed ID: 11917001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor skill learning depends on protein synthesis in the dorsal striatum after training.
    Wächter T; Röhrich S; Frank A; Molina-Luna K; Pekanovic A; Hertler B; Schubring-Giese M; Luft AR
    Exp Brain Res; 2010 Jan; 200(3-4):319-23. PubMed ID: 19823812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor-skill learning in a novel running-wheel task is dependent on D1 dopamine receptors in the striatum.
    Willuhn I; Steiner H
    Neuroscience; 2008 Apr; 153(1):249-58. PubMed ID: 18343588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Training-induced and electrically induced potentiation in the neocortex.
    Hodgson RA; Ji Z; Standish S; Boyd-Hodgson TE; Henderson AK; Racine RJ
    Neurobiol Learn Mem; 2005 Jan; 83(1):22-32. PubMed ID: 15607685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal course of gene expression during motor memory formation in primary motor cortex of rats.
    Hertler B; Buitrago MM; Luft AR; Hosp JA
    Neurobiol Learn Mem; 2016 Dec; 136():105-115. PubMed ID: 27686277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.