BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 31130065)

  • 1. Genome wide decrease of DNA replication eye density at the midblastula transition of
    Platel M; Narassimprakash H; Ciardo D; Haccard O; Marheineke K
    Cell Cycle; 2019 Jul; 18(13):1458-1472. PubMed ID: 31130065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of XChk1 function triggers apoptosis after the midblastula transition in Xenopus laevis embryos.
    Carter AD; Sible JC
    Mech Dev; 2003 Mar; 120(3):315-23. PubMed ID: 12591601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of DNA replication by the nucleus/cytoplasm ratio in Xenopus.
    Murphy CM; Michael WM
    J Biol Chem; 2013 Oct; 288(41):29382-93. PubMed ID: 23986447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of Claspin is triggered by the nucleocytoplasmic ratio at the Xenopus laevis midblastula transition.
    Gotoh T; Kishimoto T; Sible JC
    Dev Biol; 2011 May; 353(2):302-8. PubMed ID: 21396931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Titration of four replication factors is essential for the Xenopus laevis midblastula transition.
    Collart C; Allen GE; Bradshaw CR; Smith JC; Zegerman P
    Science; 2013 Aug; 341(6148):893-6. PubMed ID: 23907533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition.
    Amodeo AA; Jukam D; Straight AF; Skotheim JM
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):E1086-95. PubMed ID: 25713373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The midblastula transition defines the onset of Y RNA-dependent DNA replication in Xenopus laevis.
    Collart C; Christov CP; Smith JC; Krude T
    Mol Cell Biol; 2011 Sep; 31(18):3857-70. PubMed ID: 21791613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chk1 Inhibition of the Replication Factor Drf1 Guarantees Cell-Cycle Elongation at the Xenopus laevis Mid-blastula Transition.
    Collart C; Smith JC; Zegerman P
    Dev Cell; 2017 Jul; 42(1):82-96.e3. PubMed ID: 28697335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Midblastula transition (MBT) of the cell cycles in the yolk and pigment granule-free translucent blastomeres obtained from centrifuged Xenopus embryos.
    Iwao Y; Uchida Y; Ueno S; Yoshizaki N; Masui Y
    Dev Growth Differ; 2005 Jun; 47(5):283-94. PubMed ID: 16026537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage.
    Newport J; Kirschner M
    Cell; 1982 Oct; 30(3):675-86. PubMed ID: 6183003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered expression of Chk1 disrupts cell cycle remodeling at the midblastula transition in Xenopus laevis embryos.
    Petrus MJ; Wilhelm DE; Murakami M; Kappas NC; Carter AD; Wroble BN; Sible JC
    Cell Cycle; 2004 Feb; 3(2):212-7. PubMed ID: 14712091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear size scaling during Xenopus early development contributes to midblastula transition timing.
    Jevtić P; Levy DL
    Curr Biol; 2015 Jan; 25(1):45-52. PubMed ID: 25484296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Both Nuclear Size and DNA Amount Contribute to Midblastula Transition Timing in Xenopus laevis.
    Jevtić P; Levy DL
    Sci Rep; 2017 Aug; 7(1):7908. PubMed ID: 28801588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of Xenopus Cdc25C at Ser285 interferes with ability to activate a DNA damage replication checkpoint in pre-midblastula embryos.
    Bulavin DV; Demidenko ZN; Phillips C; Moody SA; Fornace AJ
    Cell Cycle; 2003; 2(3):263-6. PubMed ID: 12775939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissection of the XChk1 signaling pathway in Xenopus laevis embryos.
    Kappas NC; Savage P; Chen KC; Walls AT; Sible JC
    Mol Biol Cell; 2000 Sep; 11(9):3101-8. PubMed ID: 10982403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dominant negative E2F inhibits progression of the cell cycle after the midblastula transition in Xenopus.
    Tanaka T; Ono T; Kitamura N; Kato JY
    Cell Struct Funct; 2003 Dec; 28(6):515-22. PubMed ID: 15004421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SSRP1-mediated histone H1 eviction promotes replication origin assembly and accelerated development.
    Falbo L; Raspelli E; Romeo F; Fiorani S; Pezzimenti F; Casagrande F; Costa I; Parazzoli D; Costanzo V
    Nat Commun; 2020 Mar; 11(1):1345. PubMed ID: 32165637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chk1 is activated at the midblastula transition in Xenopus laevis embryos independently of DNA content and the cyclin E/Cdk2 developmental timer.
    Adjerid N; Wroble BN; Sible JC
    Cell Cycle; 2008 Apr; 7(8):1112-6. PubMed ID: 18414041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An essential role for transcription before the MBT in Xenopus laevis.
    Skirkanich J; Luxardi G; Yang J; Kodjabachian L; Klein PS
    Dev Biol; 2011 Sep; 357(2):478-91. PubMed ID: 21741375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the coupling between DNA replication and mitosis.
    Newport J; Dasso M
    J Cell Sci Suppl; 1989; 12():149-60. PubMed ID: 2517560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.