These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 31130144)

  • 1. Investigation of ORR Performances on Graphene/Phthalocyanine Nanocomposite in Neutral Medium.
    Mukherjee M; Samanta M; Das GP; Chattopadhyay KK
    Microsc Microanal; 2019 Dec; 25(6):1416-1421. PubMed ID: 31130144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen reduction reaction activity of an iron phthalocyanine/graphene oxide nanocomposite.
    Irisa K; Hatakeyama K; Yoshimoto S; Koinuma M; Ida S
    RSC Adv; 2021 Apr; 11(26):15927-15932. PubMed ID: 35481177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control over fuel cell performance through modulation of pore accessibility: investigation and modeling of carbon nanotubes effects on oxygen reduction at N-graphene-based nanocomposite.
    Qazzazie D; Halhouli M; Yurchenko O; Urban G
    Nanotechnology; 2016 Nov; 27(47):475401. PubMed ID: 27767018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and Characterizations of Zinc Oxide on Reduced Graphene Oxide for High Performance Electrocatalytic Reduction of Oxygen.
    Yu J; Huang T; Jiang Z; Sun M; Tang C
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30563295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polydopamine-Coated Manganese Complex/Graphene Nanocomposite for Enhanced Electrocatalytic Activity Towards Oxygen Reduction.
    Parnell CM; Chhetri B; Brandt A; Watanabe F; Nima ZA; Mudalige TK; Biris AS; Ghosh A
    Sci Rep; 2016 Aug; 6():31415. PubMed ID: 27528439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Atomic Ruthenium Catalytic Sites on Nitrogen-Doped Graphene for Oxygen Reduction Reaction in Acidic Medium.
    Zhang C; Sha J; Fei H; Liu M; Yazdi S; Zhang J; Zhong Q; Zou X; Zhao N; Yu H; Jiang Z; Ringe E; Yakobson BI; Dong J; Chen D; Tour JM
    ACS Nano; 2017 Jul; 11(7):6930-6941. PubMed ID: 28656759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co
    Tan H; Liu X; Wang M; Huang H; Huang P
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured nonprecious metal catalysts for oxygen reduction reaction.
    Wu G; Zelenay P
    Acc Chem Res; 2013 Aug; 46(8):1878-89. PubMed ID: 23815084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst.
    Yang HB; Miao J; Hung SF; Chen J; Tao HB; Wang X; Zhang L; Chen R; Gao J; Chen HM; Dai L; Liu B
    Sci Adv; 2016 Apr; 2(4):e1501122. PubMed ID: 27152333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous Carbon-Hosted Atomically Dispersed Iron-Nitrogen Moiety as Enhanced Electrocatalysts for Oxygen Reduction Reaction in a Wide Range of pH.
    Fu S; Zhu C; Su D; Song J; Yao S; Feng S; Engelhard MH; Du D; Lin Y
    Small; 2018 Mar; 14(12):e1703118. PubMed ID: 29430838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen-doped Graphene-Supported Transition-metals Carbide Electrocatalysts for Oxygen Reduction Reaction.
    Chen M; Liu J; Zhou W; Lin J; Shen Z
    Sci Rep; 2015 May; 5():10389. PubMed ID: 25997590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal (Mn, Fe, Co, Ni, Cu, and Zn) Phthalocyanine-Immobilized Mesoporous Carbon Nitride Materials as Durable Electrode Modifiers for the Oxygen Reduction Reaction.
    Singh DK; Ganesan V; Yadav DK; Yadav M
    Langmuir; 2020 Oct; 36(41):12202-12212. PubMed ID: 32970946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superior Catalytic Activity of Electrochemically Reduced Graphene Oxide Supported Iron Phthalocyanines toward Oxygen Reduction Reaction.
    Liu D; Long YT
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24063-8. PubMed ID: 26477473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-pot solvothermal synthesis of reduced graphene oxide-supported uniform PtCo nanocrystals for efficient and robust electrocatalysis.
    Meng HB; Zhang XF; Pu YL; Chen XL; Feng JJ; Han DM; Wang AJ
    J Colloid Interface Sci; 2019 May; 543():17-24. PubMed ID: 30772535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-organic framework-derived metal-free highly graphitized nitrogen-doped porous carbon with a hierarchical porous structure as an efficient and stable electrocatalyst for oxygen reduction reaction.
    Yang L; Xu G; Ban J; Zhang L; Xu G; Lv Y; Jia D
    J Colloid Interface Sci; 2019 Feb; 535():415-424. PubMed ID: 30317082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium.
    Pullamsetty A; Sundara R
    J Colloid Interface Sci; 2016 Oct; 479():260-270. PubMed ID: 27393888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From Carbon-Based Nanotubes to Nanocages for Advanced Energy Conversion and Storage.
    Wu Q; Yang L; Wang X; Hu Z
    Acc Chem Res; 2017 Feb; 50(2):435-444. PubMed ID: 28145692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co
    Zhang T; He C; Sun F; Ding Y; Wang M; Peng L; Wang J; Lin Y
    Sci Rep; 2017 Mar; 7():43638. PubMed ID: 28272415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering self-assembled N-doped graphene-carbon nanotube composites towards efficient oxygen reduction electrocatalysts.
    Zhang Y; Jiang WJ; Zhang X; Guo L; Hu JS; Wei Z; Wan LJ
    Phys Chem Chem Phys; 2014 Jul; 16(27):13605-9. PubMed ID: 24722811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.