These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31130235)

  • 1. Novel Fluorescent Cyclic Nucleotide Derivatives to Study CNG and HCN Channel Function.
    Otte M; Schweinitz A; Lelle M; Thon S; Enke U; Yüksel S; Schmauder R; Bonus M; Gohlke H; Benndorf K
    Biophys J; 2019 Jun; 116(12):2411-2422. PubMed ID: 31130235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophobic alkyl chains substituted to the 8-position of cyclic nucleotides enhance activation of CNG and HCN channels by an intricate enthalpy - entropy compensation.
    Otte M; Schweinitz A; Bonus M; Enke U; Schumann C; Gohlke H; Benndorf K
    Sci Rep; 2018 Oct; 8(1):14960. PubMed ID: 30297855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential regulation by cyclic nucleotides of the CNGA4 and CNGB1b subunits in olfactory cyclic nucleotide-gated channels.
    Nache V; Zimmer T; Wongsamitkul N; Schmauder R; Kusch J; Reinhardt L; Bönigk W; Seifert R; Biskup C; Schwede F; Benndorf K
    Sci Signal; 2012 Jul; 5(232):ra48. PubMed ID: 22786723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of HCN Ion Channels by Non-canonical Cyclic Nucleotides.
    VanSchouwen B; Melacini G
    Handb Exp Pharmacol; 2017; 238():123-133. PubMed ID: 28181007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering the function of the CNGB1b subunit in olfactory CNG channels.
    Nache V; Wongsamitkul N; Kusch J; Zimmer T; Schwede F; Benndorf K
    Sci Rep; 2016 Jul; 6():29378. PubMed ID: 27405959
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Leypold T; Bonus M; Spiegelhalter F; Schwede F; Schwabe T; Gohlke H; Kusch J
    J Biol Chem; 2019 Nov; 294(47):17978-17987. PubMed ID: 31615893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping ligand interactions with the hyperpolarization activated cyclic nucleotide modulated (HCN) ion channel binding domain using a soluble construct.
    Scott SP; Shea PW; Dryer SE
    Biochemistry; 2007 Aug; 46(33):9417-31. PubMed ID: 17655202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of the apo cAMP-binding domain of HCN4 - a stepping stone toward understanding the cAMP-dependent modulation of the hyperpolarization-activated cyclic-nucleotide-gated ion channels.
    Akimoto M; VanSchouwen B; Melacini G
    FEBS J; 2018 Jun; 285(12):2182-2192. PubMed ID: 29444387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function.
    Saponaro A; Pauleta SR; Cantini F; Matzapetakis M; Hammann C; Donadoni C; Hu L; Thiel G; Banci L; Santoro B; Moroni A
    Proc Natl Acad Sci U S A; 2014 Oct; 111(40):14577-82. PubMed ID: 25197093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathway and endpoint free energy calculations for cyclic nucleotide binding to HCN channels.
    Zhou L; Siegelbaum SA
    Biophys J; 2008 Jun; 94(12):L90-2. PubMed ID: 18408037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance assignment of the ligand-free cyclic nucleotide-binding domain from the murine ion channel HCN2.
    Börger C; Schünke S; Lecher J; Stoldt M; Winkhaus F; Kaupp UB; Willbold D
    Biomol NMR Assign; 2015 Oct; 9(2):243-6. PubMed ID: 25324217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorophore-Labeled Cyclic Nucleotides as Potent Agonists of Cyclic Nucleotide-Regulated Ion Channels.
    Lelle M; Otte M; Bonus M; Gohlke H; Benndorf K
    Chembiochem; 2020 Aug; 21(16):2311-2320. PubMed ID: 32227403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into the mechanisms of CNBD channel function.
    James ZM; Zagotta WN
    J Gen Physiol; 2018 Feb; 150(2):225-244. PubMed ID: 29233886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand binding and activation properties of the purified bacterial cyclic nucleotide-gated channel SthK.
    Schmidpeter PAM; Gao X; Uphadyay V; Rheinberger J; Nimigean CM
    J Gen Physiol; 2018 Jun; 150(6):821-834. PubMed ID: 29752414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the SthK carboxy-terminal region reveals a gating mechanism for cyclic nucleotide-modulated ion channels.
    Kesters D; Brams M; Nys M; Wijckmans E; Spurny R; Voets T; Tytgat J; Kusch J; Ulens C
    PLoS One; 2015; 10(1):e0116369. PubMed ID: 25625648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hysteresis of ligand binding in CNGA2 ion channels.
    Nache V; Eick T; Schulz E; Schmauder R; Benndorf K
    Nat Commun; 2013; 4():2866. PubMed ID: 24287615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for modulation and agonist specificity of HCN pacemaker channels.
    Zagotta WN; Olivier NB; Black KD; Young EC; Olson R; Gouaux E
    Nature; 2003 Sep; 425(6954):200-5. PubMed ID: 12968185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, dynamics and implied gating mechanism of a human cyclic nucleotide-gated channel.
    Gofman Y; Schärfe C; Marks DS; Haliloglu T; Ben-Tal N
    PLoS Comput Biol; 2014 Dec; 10(12):e1003976. PubMed ID: 25474149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational Flip of Nonactivated HCN2 Channel Subunits Evoked by Cyclic Nucleotides.
    Thon S; Schulz E; Kusch J; Benndorf K
    Biophys J; 2015 Dec; 109(11):2268-76. PubMed ID: 26636938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic nucleotide mapping of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels.
    Möller S; Alfieri A; Bertinetti D; Aquila M; Schwede F; Lolicato M; Rehmann H; Moroni A; Herberg FW
    ACS Chem Biol; 2014 May; 9(5):1128-37. PubMed ID: 24605759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.