These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 31130456)
1. Field Experiments and Meta-analysis Reveal Wetland Vegetation as a Crucial Element in the Coastal Protection Paradigm. Silliman BR; He Q; Angelini C; Smith CS; Kirwan ML; Daleo P; Renzi JJ; Butler J; Osborne TZ; Nifong JC; van de Koppel J Curr Biol; 2019 Jun; 29(11):1800-1806.e3. PubMed ID: 31130456 [TBL] [Abstract][Full Text] [Related]
2. Meta-analysis of salt marsh vegetation impacts and recovery: a synthesis following the Deepwater Horizon oil spill. Zengel S; Weaver J; Mendelssohn IA; Graham SA; Lin Q; Hester MW; Willis JM; Silliman BR; Fleeger JW; McClenachan G; Rabalais NN; Turner RE; Hughes AR; Cebrian J; Deis DR; Rutherford N; Roberts BJ Ecol Appl; 2022 Jan; 32(1):e02489. PubMed ID: 34741358 [TBL] [Abstract][Full Text] [Related]
3. Living Shorelines: Coastal Resilience with a Blue Carbon Benefit. Davis JL; Currin CA; O'Brien C; Raffenburg C; Davis A PLoS One; 2015; 10(11):e0142595. PubMed ID: 26569503 [TBL] [Abstract][Full Text] [Related]
4. Does vegetation prevent wave erosion of salt marsh edges? Feagin RA; Lozada-Bernard SM; Ravens TM; Möller I; Yeager KM; Baird AH Proc Natl Acad Sci U S A; 2009 Jun; 106(25):10109-13. PubMed ID: 19509340 [TBL] [Abstract][Full Text] [Related]
5. The protective role of coastal marshes: a systematic review and meta-analysis. Shepard CC; Crain CM; Beck MW PLoS One; 2011; 6(11):e27374. PubMed ID: 22132099 [TBL] [Abstract][Full Text] [Related]
6. Degradation and resilience in Louisiana salt marshes after the BP-Deepwater Horizon oil spill. Silliman BR; van de Koppel J; McCoy MW; Diller J; Kasozi GN; Earl K; Adams PN; Zimmerman AR Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11234-9. PubMed ID: 22733752 [TBL] [Abstract][Full Text] [Related]
7. Coastal resilience surges as living shorelines reduce lateral erosion of salt marshes. Polk MA; Gittman RK; Smith CS; Eulie DO Integr Environ Assess Manag; 2022 Jan; 18(1):82-98. PubMed ID: 33991025 [TBL] [Abstract][Full Text] [Related]
8. Living shorelines can enhance the nursery role of threatened estuarine habitats. Gittman RK; Peterson CH; Currin CA; Fodrie FJ; Piehler MF; Bruno JF Ecol Appl; 2016 Jan; 26(1):249-63. PubMed ID: 27039523 [TBL] [Abstract][Full Text] [Related]
9. Response of salt marshes to oiling from the Deepwater Horizon spill: Implications for plant growth, soil surface-erosion, and shoreline stability. Lin Q; Mendelssohn IA; Graham SA; Hou A; Fleeger JW; Deis DR Sci Total Environ; 2016 Jul; 557-558():369-77. PubMed ID: 27016685 [TBL] [Abstract][Full Text] [Related]
10. Linking management planning for coastal wetlands to potential future wave attenuation under a range of relative sea-level rise scenarios. Hijuelos AC; Dijkstra JT; Carruthers TJB; Heynert K; Reed DJ; van Wesenbeeck BK PLoS One; 2019; 14(5):e0216695. PubMed ID: 31086411 [TBL] [Abstract][Full Text] [Related]
11. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise? McKee KL; Vervaeke WC Glob Chang Biol; 2018 Mar; 24(3):1224-1238. PubMed ID: 29044820 [TBL] [Abstract][Full Text] [Related]
13. Interactive effects of vegetation and sediment properties on erosion of salt marshes in the Northern Adriatic Sea. Lo VB; Bouma TJ; van Belzen J; Van Colen C; Airoldi L Mar Environ Res; 2017 Oct; 131():32-42. PubMed ID: 28941644 [TBL] [Abstract][Full Text] [Related]
14. Using vulnerability assessment to characterize coastal protection benefits provided by estuarine habitats of a dynamic intracoastal waterway. Verutes GM; Yang PF; Eastman SF; Doughty CL; Adgie TE; Dietz K; Dix NG; North A; Guannel G; Chapman SK PeerJ; 2024; 12():e16738. PubMed ID: 38390391 [TBL] [Abstract][Full Text] [Related]
15. Salinity pulses interact with seasonal dry-down to increase ecosystem carbon loss in marshes of the Florida Everglades. Wilson BJ; Servais S; Mazzei V; Kominoski JS; Hu M; Davis SE; Gaiser E; Sklar F; Bauman L; Kelly S; Madden C; Richards J; Rudnick D; Stachelek J; Troxler TG Ecol Appl; 2018 Dec; 28(8):2092-2108. PubMed ID: 30376192 [TBL] [Abstract][Full Text] [Related]
16. Climate and plant controls on soil organic matter in coastal wetlands. Osland MJ; Gabler CA; Grace JB; Day RH; McCoy ML; McLeod JL; From AS; Enwright NM; Feher LC; Stagg CL; Hartley SB Glob Chang Biol; 2018 Nov; 24(11):5361-5379. PubMed ID: 29957880 [TBL] [Abstract][Full Text] [Related]
17. Belowground herbivory increases vulnerability of New England salt marshes to die-off. Coverdale TC; Altieri AH; Bertness MD Ecology; 2012 Sep; 93(9):2085-94. PubMed ID: 23094380 [TBL] [Abstract][Full Text] [Related]
18. Salt marsh as a coastal filter for the oceans: changes in function with experimental increases in nitrogen loading and sea-level rise. Nelson JL; Zavaleta ES PLoS One; 2012; 7(8):e38558. PubMed ID: 22879873 [TBL] [Abstract][Full Text] [Related]
19. Impacts of the Deepwater Horizon oil spill on the salt marsh vegetation of Louisiana. Hester MW; Willis JM; Rouhani S; Steinhoff MA; Baker MC Environ Pollut; 2016 Sep; 216():361-370. PubMed ID: 27299994 [TBL] [Abstract][Full Text] [Related]
20. Soil stabilization linked to plant diversity and environmental context in coastal wetlands. Ford H; Garbutt A; Ladd C; Malarkey J; Skov MW J Veg Sci; 2016 Mar; 27(2):259-268. PubMed ID: 27867297 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]