These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31130659)

  • 1. Editorial for the Special Issue on AC Electrokinetics in Microfluidic Devices.
    Ramos A; García-Sánchez P
    Micromachines (Basel); 2019 May; 10(5):. PubMed ID: 31130659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent applications of AC electrokinetics in biomolecular analysis on microfluidic devices.
    Sasaki N
    Anal Sci; 2012; 28(1):3-8. PubMed ID: 22232216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AC Electrokinetics of Physiological Fluids for Biomedical Applications.
    Lu Y; Liu T; Lamanda AC; Sin ML; Gau V; Liao JC; Wong PK
    J Lab Autom; 2015 Dec; 20(6):611-20. PubMed ID: 25487557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-chip micromanipulation and assembly of colloidal particles by electric fields.
    Velev OD; Bhatt KH
    Soft Matter; 2006 Aug; 2(9):738-750. PubMed ID: 32680214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid generation and manipulation of microfluidic vortex flows induced by AC electrokinetics with optical illumination.
    Park C; Wereley ST
    Lab Chip; 2013 Apr; 13(7):1289-94. PubMed ID: 23380888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Study of Particle-Fluid Flow Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device.
    Sato N; Yao J; Sugawara M; Takei M
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):453-463. PubMed ID: 29993454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive analysis of particle motion under non-uniform AC electric fields in a microchannel.
    Oh J; Hart R; Capurro J; Noh HM
    Lab Chip; 2009 Jan; 9(1):62-78. PubMed ID: 19209337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubule alignment and manipulation using AC electrokinetics.
    Uppalapati M; Huang YM; Jackson TN; Hancock WO
    Small; 2008 Sep; 4(9):1371-81. PubMed ID: 18720434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AC electrothermal manipulation of conductive fluids and particles for lab-chip applications.
    Lian M; Islam N; Wu J
    IET Nanobiotechnol; 2007 Jun; 1(3):36-43. PubMed ID: 17506595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of electrical fields with fluids: laboratory-on-a-chip applications.
    Wu J
    IET Nanobiotechnol; 2008 Mar; 2(1):14-27. PubMed ID: 18298196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiphase electrodes for microbead control applications: integration of DEP and electrokinetics for bio-particle positioning.
    Yantzi JD; Yeow JT; Abdallah SS
    Biosens Bioelectron; 2007 May; 22(11):2539-45. PubMed ID: 17112718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trajectory Control of Self-Propelled Micromotors Using AC Electrokinetics.
    Yoshizumi Y; Honegger T; Berton K; Suzuki H; Peyrade D
    Small; 2015 Nov; 11(42):5630-5. PubMed ID: 26313378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion size effects on the electrokinetics of salt-free concentrated suspensions in ac fields.
    Roa R; Carrique F; Ruiz-Reina E
    J Colloid Interface Sci; 2012 Dec; 387(1):153-61. PubMed ID: 22958853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AC Electrokinetics of Polarizable Tri-Axial Ellipsoidal Nano-Antennas and Quantum Dot Manipulation.
    Miloh T
    Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30682834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DC-biased AC-electrokinetics: a conductivity gradient driven fluid flow.
    Ng WY; Ramos A; Lam YC; Wijaya IP; Rodriguez I
    Lab Chip; 2011 Dec; 11(24):4241-7. PubMed ID: 22052533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid electrokinetics for separation, mixing, and concentration of colloidal particles.
    Sin MLY; Shimabukuro Y; Wong PK
    Nanotechnology; 2009 Apr; 20(16):165701. PubMed ID: 19420574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ripple structure-generated hybrid electrokinetics for on-chip mixing and separating of functionalized beads.
    Cheng IF; Chiang SC; Chung CC; Yeh TM; Chang HC
    Biomicrofluidics; 2014 Nov; 8(6):061102. PubMed ID: 25610512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Editorial for the Special Issue on Particles Separation in Microfluidic Devices.
    Tottori N; Nisisako T
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32580468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Insulator-based dielectrophoresis using DC-biased, AC electric fields for selective bacterial trapping.
    Zellner P; Shake T; Hosseini Y; Nakidde D; Riquelme MV; Sahari A; Pruden A; Behkam B; Agah M
    Electrophoresis; 2015 Jan; 36(2):277-83. PubMed ID: 25257669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarization behavior of polystyrene particles under direct current and low-frequency (<1 kHz) electric fields in dielectrophoretic systems.
    Saucedo-Espinosa MA; Rauch MM; LaLonde A; Lapizco-Encinas BH
    Electrophoresis; 2016 Feb; 37(4):635-44. PubMed ID: 26531799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.