These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 31130674)
21. Effect of Temperature on the Physical, Electro-Chemical and Adsorption Properties of Carbon Micro-Spheres Using Hydrothermal Carbonization Process. Chowdhury ZZ; Krishnan B; Sagadevan S; Rafique RF; Hamizi NAB; Abdul Wahab Y; Khan AA; Johan RB; Al-Douri Y; Kazi SN; Tawab Shah S Nanomaterials (Basel); 2018 Aug; 8(8):. PubMed ID: 30082616 [TBL] [Abstract][Full Text] [Related]
22. Conversion of sweet potato waste to solid fuel via hydrothermal carbonization. Chen X; Ma X; Peng X; Lin Y; Yao Z Bioresour Technol; 2018 Feb; 249():900-907. PubMed ID: 29145116 [TBL] [Abstract][Full Text] [Related]
23. Conversion of heavy metal-containing biowaste from phytoremediation site to value-added solid fuel through hydrothermal carbonization. Lee J; Park KY Environ Pollut; 2021 Jan; 269():116127. PubMed ID: 33279266 [TBL] [Abstract][Full Text] [Related]
24. Chemical and morphological changes in hydrochars derived from microcrystalline cellulose and investigated by chromatographic, spectroscopic and adsorption techniques. Diakité M; Paul A; Jäger C; Pielert J; Mumme J Bioresour Technol; 2013 Dec; 150():98-105. PubMed ID: 24157681 [TBL] [Abstract][Full Text] [Related]
25. Improvement of the fuel properties of dairy manure by increasing the biomass-to-water ratio in hydrothermal carbonization. Aliyu M; Iwabuchi K; Itoh T PLoS One; 2022; 17(7):e0269935. PubMed ID: 35849561 [TBL] [Abstract][Full Text] [Related]
26. Co-hydrothermal carbonization of lignocellulosic biomass and waste polyvinyl chloride for high-quality solid fuel production: Hydrochar properties and its combustion and pyrolysis behaviors. Zhang X; Zhang L; Li A Bioresour Technol; 2019 Dec; 294():122113. PubMed ID: 31542495 [TBL] [Abstract][Full Text] [Related]
27. Effects of hydrolysis and carbonization reactions on hydrochar production. Fakkaew K; Koottatep T; Polprasert C Bioresour Technol; 2015 Sep; 192():328-34. PubMed ID: 26051497 [TBL] [Abstract][Full Text] [Related]
28. Influence of Mineral Composition of Chars Derived by Hydrothermal Carbonization on Sorption Behavior of CO Wedler C; Lotz K; Arami-Niya A; Xiao G; Span R; Muhler M; May EF; Richter M ACS Omega; 2020 May; 5(19):10704-10714. PubMed ID: 32455189 [TBL] [Abstract][Full Text] [Related]
29. Magnetic Behavior of Carbon Materials Made from Biomass by Fe-Assisted Hydrothermal Carbonization. Olivares M; Román S; Ledesma B; Álvarez A Molecules; 2019 Nov; 24(21):. PubMed ID: 31694183 [TBL] [Abstract][Full Text] [Related]
30. Novel Taslim R; Apriwandi A; Taer E ACS Omega; 2022 Oct; 7(41):36489-36502. PubMed ID: 36278080 [TBL] [Abstract][Full Text] [Related]
31. Hydrothermal carbonization coupled with fast pyrolysis of almond shells: Valorization and production of valuable chemicals. Alcazar-Ruiz A; Villardon A; Dorado F; Sanchez-Silva L Waste Manag; 2023 Sep; 169():112-124. PubMed ID: 37421823 [TBL] [Abstract][Full Text] [Related]
32. Micro-mesoporous carbons from original and pelletized rice husk via one-step catalytic pyrolysis. Fu Y; Zhang N; Shen Y; Ge X; Chen M Bioresour Technol; 2018 Dec; 269():67-73. PubMed ID: 30149256 [TBL] [Abstract][Full Text] [Related]
33. New insights into the efficient removal of emerging contaminants by biochars and hydrochars derived from olive oil wastes. Delgado-Moreno L; Bazhari S; Gasco G; Méndez A; El Azzouzi M; Romero E Sci Total Environ; 2021 Jan; 752():141838. PubMed ID: 32889274 [TBL] [Abstract][Full Text] [Related]
34. Rice husk hydrochars from metal chloride-assisted hydrothermal carbonization as biosorbents of organics from aqueous solution. Li Y; Hagos FM; Chen R; Qian H; Mo C; Di J; Gai X; Yang R; Pan G; Shan S Bioresour Bioprocess; 2021 Oct; 8(1):99. PubMed ID: 38650206 [TBL] [Abstract][Full Text] [Related]
36. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques. Lu X; Jordan B; Berge ND Waste Manag; 2012 Jul; 32(7):1353-65. PubMed ID: 22516099 [TBL] [Abstract][Full Text] [Related]
37. The properties and combustion behaviors of hydrochars derived from co-hydrothermal carbonization of sewage sludge and food waste. Zheng C; Ma X; Yao Z; Chen X Bioresour Technol; 2019 Aug; 285():121347. PubMed ID: 31004948 [TBL] [Abstract][Full Text] [Related]
38. Hydrothermal carbon from biomass: structural differences between hydrothermal and pyrolyzed carbons via 13C solid state NMR. Falco C; Perez Caballero F; Babonneau F; Gervais C; Laurent G; Titirici MM; Baccile N Langmuir; 2011 Dec; 27(23):14460-71. PubMed ID: 22050004 [TBL] [Abstract][Full Text] [Related]
39. Towards Negative Emissions: Hydrothermal Carbonization of Biomass for Sustainable Carbon Materials. Yu S; He J; Zhang Z; Sun Z; Xie M; Xu Y; Bie X; Li Q; Zhang Y; Sevilla M; Titirici MM; Zhou H Adv Mater; 2024 May; 36(18):e2307412. PubMed ID: 38251820 [TBL] [Abstract][Full Text] [Related]
40. Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization. Park KY; Lee K; Kim D Bioresour Technol; 2018 Jun; 258():119-124. PubMed ID: 29524686 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]