These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 31130674)
41. Preparation of Supercapacitor Carbon Electrode Materials by Low-Temperature Carbonization of High-Nitrogen-Doped Raw Materials from Food Waste. Mu Q; Liu C; Guo Y; Wang K; Gao Z; Du Y; Cao C; Duan P; Kapusta K Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203161 [TBL] [Abstract][Full Text] [Related]
42. Pyrolysis kinetics and thermodynamic parameters of the hydrochars derived from co-hydrothermal carbonization of sawdust and sewage sludge using thermogravimetric analysis. Ma J; Luo H; Li Y; Liu Z; Li D; Gai C; Jiao W Bioresour Technol; 2019 Jun; 282():133-141. PubMed ID: 30852333 [TBL] [Abstract][Full Text] [Related]
43. Co-hydrothermal carbonization of oil shale and rice husk: Combustion, pyrolysis characteristics, and synergistic effect. Liu Y; Wang E; Kan Z; Liu B; Bai L; Wang Q; Zhang X Waste Manag Res; 2023 Feb; 41(2):442-456. PubMed ID: 36127886 [TBL] [Abstract][Full Text] [Related]
44. Preparation and properties of hydrochars from macadamia nut shell via hydrothermal carbonization. Fan F; Yang Z; Li H; Shi Z; Kan H R Soc Open Sci; 2018 Oct; 5(10):181126. PubMed ID: 30473856 [TBL] [Abstract][Full Text] [Related]
46. Comparative Evaluation of Hydrothermal Carbonization and Low Temperature Pyrolysis of Eucommia ulmoides Oliver for the Production of Solid Biofuel. Wang Y; Qiu L; Zhu M; Sun G; Zhang T; Kang K Sci Rep; 2019 Apr; 9(1):5535. PubMed ID: 30940831 [TBL] [Abstract][Full Text] [Related]
47. Hydrothermal carbonization of biomass from landscape management - Influence of process parameters on soil properties of hydrochars. Röhrdanz M; Rebling T; Ohlert J; Jasper J; Greve T; Buchwald R; von Frieling P; Wark M J Environ Manage; 2016 May; 173():72-8. PubMed ID: 26974240 [TBL] [Abstract][Full Text] [Related]
48. The influence of combined pretreatment with surfactant/ultrasonic and hydrothermal carbonization on fuel properties, pyrolysis and combustion behavior of corn stalk. Xu X; Tu R; Sun Y; Wu Y; Jiang E; Zhen J Bioresour Technol; 2019 Jan; 271():427-438. PubMed ID: 30343135 [TBL] [Abstract][Full Text] [Related]
49. Hydrothermal carbonization of different wetland biomass wastes: Phosphorus reclamation and hydrochar production. Cui X; Lu M; Khan MB; Lai C; Yang X; He Z; Chen G; Yan B Waste Manag; 2020 Feb; 102():106-113. PubMed ID: 31670228 [TBL] [Abstract][Full Text] [Related]
50. Engineering the Pores of Biomass-Derived Carbon: Insights for Achieving Ultrahigh Stability at High Power in High-Energy Supercapacitors. Thangavel R; Kaliyappan K; Ramasamy HV; Sun X; Lee YS ChemSusChem; 2017 Jul; 10(13):2805-2815. PubMed ID: 28453182 [TBL] [Abstract][Full Text] [Related]
51. Conversion of poultry wastes into energy feedstocks. Kantarli IC; Kabadayi A; Ucar S; Yanik J Waste Manag; 2016 Oct; 56():530-9. PubMed ID: 27440220 [TBL] [Abstract][Full Text] [Related]
52. Preparing hierarchical porous carbon with well-developed microporosity using alkali metal-catalyzed hydrothermal carbonization for VOCs adsorption. Ye G; Wang Y; Zhu W; Wang X; Yao F; Jiao Y; Cheng H; Huang H; Ye D Chemosphere; 2022 Jul; 298():134248. PubMed ID: 35288187 [TBL] [Abstract][Full Text] [Related]
53. Influences of feedstock type and process variables on hydrochar properties. Toptas Tag A; Duman G; Yanik J Bioresour Technol; 2018 Feb; 250():337-344. PubMed ID: 29182991 [TBL] [Abstract][Full Text] [Related]
54. Effect of temperature on the fuel properties of food waste and coal blend treated under co-hydrothermal carbonization. Ul Saqib N; Sarmah AK; Baroutian S Waste Manag; 2019 Apr; 89():236-246. PubMed ID: 31079736 [TBL] [Abstract][Full Text] [Related]
55. Engineering carbon materials from the hydrothermal carbonization process of biomass. Hu B; Wang K; Wu L; Yu SH; Antonietti M; Titirici MM Adv Mater; 2010 Feb; 22(7):813-28. PubMed ID: 20217791 [TBL] [Abstract][Full Text] [Related]
56. Physical and chemical characterization of waste wood derived biochars. Yargicoglu EN; Sadasivam BY; Reddy KR; Spokas K Waste Manag; 2015 Feb; 36():256-68. PubMed ID: 25464942 [TBL] [Abstract][Full Text] [Related]
57. A cascade biorefinery for grape marc: Recovery of materials and energy through thermochemical and biochemical processes. Farru G; Cappai G; Carucci A; De Gioannis G; Asunis F; Milia S; Muntoni A; Perra M; Serpe A Sci Total Environ; 2022 Nov; 846():157464. PubMed ID: 35868380 [TBL] [Abstract][Full Text] [Related]
58. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Sheberla D; Bachman JC; Elias JS; Sun CJ; Shao-Horn Y; Dincă M Nat Mater; 2017 Feb; 16(2):220-224. PubMed ID: 27723738 [TBL] [Abstract][Full Text] [Related]
59. Cellulose-Amine Porous Materials: The Effect of Activation Method on Structure, Textural Properties, CO Krupšová S; Almáši M Molecules; 2024 Mar; 29(5):. PubMed ID: 38474671 [TBL] [Abstract][Full Text] [Related]
60. Bio- and hydrochars from rice straw and pig manure: Inter-comparison. Liu Y; Yao S; Wang Y; Lu H; Brar SK; Yang S Bioresour Technol; 2017 Jul; 235():332-337. PubMed ID: 28376384 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]