BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 31130684)

  • 1. Rapid Alloy Development of Extremely High-Alloyed Metals Using Powder Blends in Laser Powder Bed Fusion.
    Ewald S; Kies F; Hermsen S; Voshage M; Haase C; Schleifenbaum JH
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31130684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-Situ Alloy Formation of a WMoTaNbV Refractory Metal High Entropy Alloy by Laser Powder Bed Fusion (PBF-LB/M).
    Huber F; Bartels D; Schmidt M
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34200096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser additive manufacturing of biodegradable magnesium alloy WE43: A detailed microstructure analysis.
    Bär F; Berger L; Jauer L; Kurtuldu G; Schäublin R; Schleifenbaum JH; Löffler JF
    Acta Biomater; 2019 Oct; 98():36-49. PubMed ID: 31132536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review on Traditional Processes and Laser Powder Bed Fusion of Aluminum Alloy Microstructures, Mechanical Properties, Costs, and Applications.
    Wang X; Zhang D; Li A; Yi D; Li T
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Review on Metallic Alloys Fabrication Using Elemental Powder Blends by Laser Powder Directed Energy Deposition Process.
    Chen Y; Zhang X; Parvez MM; Liou F
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32806690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occupational exposure during metal additive manufacturing: A case study of laser powder bed fusion of aluminum alloy.
    Azzougagh MN; Keller FX; Cabrol E; Cici M; Pourchez J
    J Occup Environ Hyg; 2021 Jun; 18(6):223-236. PubMed ID: 33989129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective electron beam melting of Al0.5CrMoNbTa0.5 high entropy alloys using elemental powder blend.
    Popov VV; Katz-Demyanetz A; Koptyug A; Bamberger M
    Heliyon; 2019 Feb; 5(2):e01188. PubMed ID: 30839937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Metal Powders Used for Additive Manufacturing.
    Slotwinski JA; Garboczi EJ; Stutzman PE; Ferraris CF; Watson SS; Peltz MA
    J Res Natl Inst Stand Technol; 2014; 119():460-93. PubMed ID: 26601040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Crack-Free Nickel-Based Superalloy Considered Non-Weldable during Laser Powder Bed Fusion.
    Sanchez-Mata O; Wang X; Muñiz-Lerma JA; Attarian Shandiz M; Gauvin R; Brochu M
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30046019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circumventing Solidification Cracking Susceptibility in Al-Cu Alloys Prepared by Laser Powder Bed Fusion.
    Xi L; Lu Q; Gu D; Cao S; Zhang H; Kaban I; Sarac B; Prashanth KG; Eckert J
    3D Print Addit Manuf; 2024 Apr; 11(2):e731-e742. PubMed ID: 38689899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Aluminum Alloys Specifically Designed for Laser Powder Bed Fusion: A Review.
    Aversa A; Marchese G; Saboori A; Bassini E; Manfredi D; Biamino S; Ugues D; Fino P; Lombardi M
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing.
    Krakhmalev P; Yadroitsev I; Yadroitsava I; de Smidt O
    Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 28972546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Additive manufacturing of NiTi shape memory alloy and its industrial applications.
    Dzogbewu TC; de Beer DJ
    Heliyon; 2024 Jan; 10(1):e23369. PubMed ID: 38163186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the microstructure and phase stability of as-cast, CAD/CAM and powder metallurgy manufactured Co-Cr dental alloys.
    Li KC; Prior DJ; Waddell JN; Swain MV
    Dent Mater; 2015 Dec; 31(12):e306-15. PubMed ID: 26597769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical Properties of Bulk Metallic Glasses Additively Manufactured by Laser Powder Bed Fusion: A Review.
    Luo H; Du Y
    Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparison of Solidification Structures and Submicroscale Cellular Segregation in Rapidly Solidified Stainless Steels Produced via Two-Piston Splat Quenching and Laser Powder Bed Fusion.
    Hasenbusch ZA; Deal A; Brown B; Wilson D; Nastac L; Brewer LN
    Microsc Microanal; 2023 Jul; 29(4):1328-1349. PubMed ID: 37488830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Characterization of a Biodegradable Mg Alloy after Powder Bed Fusion with Laser Beam/Metal Processing for Custom Shaped Implants.
    Raducanu D; Cojocaru VD; Nocivin A; Drob SI; Hendea RE; Stanciu D; Ivanescu S; Raducanu VA; Serban N; Cojocaru EM; Campian RS
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective Platform Heating for Laser Powder Bed Fusion of an Al-Mn-Sc-Based Alloy.
    Bayoumy D; Boll T; Karapuzha AS; Wu X; Zhu Y; Huang A
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Printability, Microstructure, and Mechanical Properties of Fe
    Li K; Trofimov V; Han C; Hu G; Dong Z; Zou Y; Wang Z; Yan F; Fu Z; Yang Y
    Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38258242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of design and postprocessing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffolds.
    Kopp A; Derra T; Müther M; Jauer L; Schleifenbaum JH; Voshage M; Jung O; Smeets R; Kröger N
    Acta Biomater; 2019 Oct; 98():23-35. PubMed ID: 30959185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.