These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
767 related articles for article (PubMed ID: 31130689)
1. Using of Multi-Source and Multi-Temporal Remote Sensing Data Improves Crop-Type Mapping in the Subtropical Agriculture Region. Sun C; Bian Y; Zhou T; Pan J Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31130689 [TBL] [Abstract][Full Text] [Related]
2. Irrigated Crop Types Mapping in Tashkent Province of Uzbekistan with Remote Sensing-Based Classification Methods. Erdanaev E; Kappas M; Wyss D Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957240 [TBL] [Abstract][Full Text] [Related]
3. [Grain yield estimation of wheat-maize rotation cultivated land based on Sentinel-2 multi-spectral image: A case study in Caoxian County, Shandong, China]. Chen Y; Zhao GX; Chang CY; Wang ZR; Li YS; Zhao HS; Zhang SW; Pan JR Ying Yong Sheng Tai Xue Bao; 2023 Dec; 34(12):3347-3356. PubMed ID: 38511374 [TBL] [Abstract][Full Text] [Related]
4. Prediction of Crop Yield Using Phenological Information Extracted from Remote Sensing Vegetation Index. Ji Z; Pan Y; Zhu X; Wang J; Li Q Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671356 [TBL] [Abstract][Full Text] [Related]
5. Land cover mapping using Sentinel-1 SAR and Landsat 8 imageries of Lagos State for 2017. Makinde EO; Oyelade EO Environ Sci Pollut Res Int; 2020 Jan; 27(1):66-74. PubMed ID: 31201700 [TBL] [Abstract][Full Text] [Related]
6. Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and -2. Meroni M; d'Andrimont R; Vrieling A; Fasbender D; Lemoine G; Rembold F; Seguini L; Verhegghen A Remote Sens Environ; 2021 Feb; 253():112232. PubMed ID: 33536689 [TBL] [Abstract][Full Text] [Related]
7. Surface biophysical features fusion in remote sensing for improving land crop/cover classification accuracy. Fathololoumi S; Firozjaei MK; Li H; Biswas A Sci Total Environ; 2022 Sep; 838(Pt 3):156520. PubMed ID: 35679933 [TBL] [Abstract][Full Text] [Related]
8. Using spatio-temporal fusion of Landsat-8 and MODIS data to derive phenology, biomass and yield estimates for corn and soybean. Liao C; Wang J; Dong T; Shang J; Liu J; Song Y Sci Total Environ; 2019 Feb; 650(Pt 2):1707-1721. PubMed ID: 30273730 [TBL] [Abstract][Full Text] [Related]
9. Multi-Year Mapping of Major Crop Yields in an Irrigation District from High Spatial and Temporal Resolution Vegetation Index. Yu B; Shang S Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30404139 [TBL] [Abstract][Full Text] [Related]
10. Crop Classification Based on Red Edge Features Analysis of GF-6 WFV Data. Kang Y; Meng Q; Liu M; Zou Y; Wang X Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202705 [TBL] [Abstract][Full Text] [Related]
11. Multi-Feature Classification of Multi-Sensor Satellite Imagery Based on Dual-Polarimetric Sentinel-1A, Landsat-8 OLI, and Hyperion Images for Urban Land-Cover Classification. Zhou T; Li Z; Pan J Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29382073 [TBL] [Abstract][Full Text] [Related]
12. Use of Optical and Radar Imagery for Crop Type Classification in Africa: A Review. Choukri M; Laamrani A; Chehbouni A Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894409 [TBL] [Abstract][Full Text] [Related]
13. Mapping of Land Cover with Optical Images, Supervised Algorithms, and Google Earth Engine. Pech-May F; Aquino-Santos R; Rios-Toledo G; Posadas-Durán JPF Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808225 [TBL] [Abstract][Full Text] [Related]
14. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites. Maynard JJ; Karl JW PLoS One; 2017; 12(4):e0175201. PubMed ID: 28414731 [TBL] [Abstract][Full Text] [Related]
15. Research on cropping intensity mapping of the Huai River Basin (China) based on multi-source remote sensing data fusion. Wang Y; Fan L; Tao R; Zhang L; Zhao W Environ Sci Pollut Res Int; 2022 Feb; 29(9):12661-12679. PubMed ID: 34554403 [TBL] [Abstract][Full Text] [Related]
16. An Improved Multi-temporal and Multi-feature Tea Plantation Identification Method Using Sentinel-2 Imagery. Zhu J; Pan Z; Wang H; Huang P; Sun J; Qin F; Liu Z Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31060327 [TBL] [Abstract][Full Text] [Related]
17. Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region. Zhou T; Pan J; Zhang P; Wei S; Han T Sensors (Basel); 2017 May; 17(6):. PubMed ID: 28587066 [TBL] [Abstract][Full Text] [Related]
18. Classification of Rice Heavy Metal Stress Levels Based on Phenological Characteristics Using Remote Sensing Time-Series Images and Data Mining Algorithms. Liu T; Liu X; Liu M; Wu L Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30558149 [TBL] [Abstract][Full Text] [Related]
19. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture. Mazzia V; Comba L; Khaliq A; Chiaberge M; Gay P Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365636 [TBL] [Abstract][Full Text] [Related]
20. Rapid and Automated Approach for Early Crop Mapping Using Sentinel-1 and Sentinel-2 on Google Earth Engine; A Case of a Highly Heterogeneous and Fragmented Agricultural Region. Saad El Imanni H; El Harti A; Hssaisoune M; Velastegui-Montoya A; Elbouzidi A; Addi M; El Iysaouy L; El Hachimi J J Imaging; 2022 Nov; 8(12):. PubMed ID: 36547481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]