These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 31130708)

  • 1. A Study into the Effect of Different Nozzles Shapes and Fibre-Reinforcement in 3D Printed Mortar.
    Shakor P; Nejadi S; Paul G
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31130708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Polypropylene Fibre Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction.
    Nematollahi B; Vijay P; Sanjayan J; Nazari A; Xia M; Naidu Nerella V; Mechtcherine V
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30469535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimisation of Mix Proportion of 3D Printable Mortar Based on Rheological Properties and Material Strength Using Factorial Design of Experiment.
    Kaushik S; Sonebi M; Amato G; Das UK; Perrot A
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Approach for 3D Printing Fiber-Reinforced Mortars.
    Ungureanu D; Onuțu C; Isopescu DN; Țăranu N; Zghibarcea ȘV; Spiridon IA; Polcovnicu RA
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of 3D Printed Spatial Reinforcement on Flexural Characteristics of Conventional Mortar.
    Katzer J; Szatkiewicz T
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32674343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-High Early Strength Cementitious Grout Suitable for Additive Manufacturing Applications Fabricated by Using Graphene Oxide and Viscosity Modifying Agents.
    Mohammed A; Al-Saadi NTK
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33287399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Properties of 3D-Printed Mortar in Air vs. Underwater.
    Woo SJ; Yang JM; Lee H; Kwon HK
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Behavior of Printed Strain Hardening Cementitious Composites.
    Chaves Figueiredo S; Romero Rodríguez C; Y Ahmed Z; Bos DH; Xu Y; Salet TM; Çopuroğlu O; Schlangen E; Bos FP
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32422886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glass Fibre-Reinforced Extrusion 3D-Printed Composites: Experimental and Numerical Study of Mechanical Properties.
    Kámán A; Balogh L; Tarcsay BL; Jakab M; Meszlényi A; Turcsán T; Egedy A
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the Effects of Printing Process and Reinforcement Materials on the Performance of 3D-Printed Glass Bead Insulation Mortar.
    Wang J; Zhang X; Liu Z; Zhao J
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interlayer Strength of 3D-Printed Mortar Reinforced by Postinstalled Reinforcement.
    Park J; Bui QT; Lee J; Joh C; Yang IH
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Overview of the Performance of Cementitious and Non-Cementitious Nanomaterials in Mortar at Normal and Elevated Temperatures.
    Khan MA; Imam MK; Irshad K; Ali HM; Hasan MA; Islam S
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33918466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of TiO
    de Matos P; Zat T; Corazza K; Fensterseifer E; Sakata R; Mohamad G; Rodríguez E
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Fibre-Reinforced Cementitious Mortar with Mineral Wool and Coconut Fibre.
    Awoyera PO; Odutuga OL; Effiong JU; De Jesus Silvera Sarmiento A; Mortazavi SJ; Hu JW
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of 3D-Printed Polymer Fiber-Reinforced Mortars: A Review.
    Liu J; Lv C
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early-Age Mechanical Properties of 3D-Printed Mortar with Spent Garnet.
    Skibicki S; Jakubowska P; Kaszyńska M; Sibera D; Cendrowski K; Hoffmann M
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical Properties of Hardened 3D Printed Concretes and Mortars-Development of a Consistent Experimental Characterization Strategy.
    Meurer M; Classen M
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33562674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors Influencing the Properties of Extrusion-Based 3D-Printed Alkali-Activated Fly Ash-Slag Mortar.
    Yuan Q; Gao C; Huang T; Zuo S; Yao H; Zhang K; Huang Y; Liu J
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Different Orientation Angle, Size, Surface Roughness, and Heat Curing on Mechanical Behavior of 3D Printed Cement Mortar With/Without Glass Fiber in Powder-Based 3DP.
    Shakor P; Nejadi S; Paul G; Gowripalan N
    3D Print Addit Manuf; 2023 Apr; 10(2):330-355. PubMed ID: 37123523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing Clay-Based 3D-Printed Mortars with Polymeric Mesh Reinforcement Techniques.
    Pemas S; Sougioultzi K; Kouroutzidou C; Stefanidou M; Konstantinidis AA; Pechlivani EM
    Polymers (Basel); 2024 Jul; 16(15):. PubMed ID: 39125208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.