These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 31130974)

  • 1. A Low-Cost and Unsupervised Image Recognition Methodology for Yield Estimation in a Vineyard.
    Di Gennaro SF; Toscano P; Cinat P; Berton A; Matese A
    Front Plant Sci; 2019; 10():559. PubMed ID: 31130974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grape Cluster Detection Using UAV Photogrammetric Point Clouds as a Low-Cost Tool for Yield Forecasting in Vineyards.
    Torres-Sánchez J; Mesas-Carrascosa FJ; Santesteban LG; Jiménez-Brenes FM; Oneka O; Villa-Llop A; Loidi M; López-Granados F
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33925169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of novel precision viticulture tool for canopy biomass estimation and missing plant detection based on 2.5D and 3D approaches using RGB images acquired by UAV platform.
    Di Gennaro SF; Matese A
    Plant Methods; 2020; 16():91. PubMed ID: 32636922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Non-Invasive Method Based on Computer Vision for Grapevine Cluster Compactness Assessment Using a Mobile Sensing Platform under Field Conditions.
    Palacios F; Diago MP; Tardaguila J
    Sensors (Basel); 2019 Sep; 19(17):. PubMed ID: 31480754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MECS-VINE
    Gatti M; Dosso P; Maurino M; Merli MC; Bernizzoni F; José Pirez F; Platè B; Bertuzzi GC; Poni S
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27898049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ramie Yield Estimation Based on UAV RGB Images.
    Fu H; Wang C; Cui G; She W; Zhao L
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of flower number per inflorescence in grapevine by image analysis under field conditions.
    Diago MP; Sanz-Garcia A; Millan B; Blasco J; Tardaguila J
    J Sci Food Agric; 2014 Aug; 94(10):1981-7. PubMed ID: 24302287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grapevine yield and leaf area estimation using supervised classification methodology on RGB images taken under field conditions.
    Diago MP; Correa C; Millán B; Barreiro P; Valero C; Tardaguila J
    Sensors (Basel); 2012 Dec; 12(12):16988-7006. PubMed ID: 23235443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The estimation of crop emergence in potatoes by UAV RGB imagery.
    Li B; Xu X; Han J; Zhang L; Bian C; Jin L; Liu J
    Plant Methods; 2019; 15():15. PubMed ID: 30792752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climatic records and within field data on yield and harvest quality over a whole vineyard estate.
    Gras JP; Brunel G; Ducanchez A; Crestey T; Tisseyre B
    Data Brief; 2023 Oct; 50():109579. PubMed ID: 37771711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Throughput Phenotyping of Canopy Cover and Senescence in Maize Field Trials Using Aerial Digital Canopy Imaging.
    Makanza R; Zaman-Allah M; Cairns JE; Magorokosho C; Tarekegne A; Olsen M; Prasanna BM
    Remote Sens (Basel); 2018 Feb; 10(2):330. PubMed ID: 33489316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vineyard yield estimation based on the analysis of high resolution images obtained with artificial illumination at night.
    Font D; Tresanchez M; Martínez D; Moreno J; Clotet E; Palacín J
    Sensors (Basel); 2015 Apr; 15(4):8284-301. PubMed ID: 25860071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GrapesNet: Indian RGB & RGB-D vineyard image datasets for deep learning applications.
    Barbole DK; Jadhav PM
    Data Brief; 2023 Jun; 48():109100. PubMed ID: 37089206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dataset on UAV RGB videos acquired over a vineyard including bunch labels for object detection and tracking.
    Ariza-Sentís M; Vélez S; Valente J
    Data Brief; 2023 Feb; 46():108848. PubMed ID: 36619256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic Coregistration Algorithm to Remove Canopy Shaded Pixels in UAV-Borne Thermal Images to Improve the Estimation of Crop Water Stress Index of a Drip-Irrigated Cabernet Sauvignon Vineyard.
    Poblete T; Ortega-Farías S; Ryu D
    Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29385722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wheat ear counting in-field conditions: high throughput and low-cost approach using RGB images.
    Fernandez-Gallego JA; Kefauver SC; Gutiérrez NA; Nieto-Taladriz MT; Araus JL
    Plant Methods; 2018; 14():22. PubMed ID: 29568319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating 2-D and 3-D Proximal Remote Sensing Techniques for Vineyard Yield Estimation.
    Hacking C; Poona N; Manzan N; Poblete-Echeverría C
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31443479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput Phenotyping of Bioethanol Potential in Cereals Using UAV-Based Multi-Spectral Imagery.
    Ostos-Garrido FJ; de Castro AI; Torres-Sánchez J; Pistón F; Peña JM
    Front Plant Sci; 2019; 10():948. PubMed ID: 31396251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UAV-based individual plant detection and geometric parameter extraction in vineyards.
    Cantürk M; Zabawa L; Pavlic D; Dreier A; Klingbeil L; Kuhlmann H
    Front Plant Sci; 2023; 14():1244384. PubMed ID: 38034574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.