These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Enhanced cell-wall damage mediated, antibacterial activity of core-shell ZnO@Ag heterojunction nanorods against Staphylococcus aureus and Pseudomonas aeruginosa. Ponnuvelu DV; Suriyaraj SP; Vijayaraghavan T; Selvakumar R; Pullithadathail B J Mater Sci Mater Med; 2015 Jul; 26(7):204. PubMed ID: 26152512 [TBL] [Abstract][Full Text] [Related]
3. In Situ Green Synthesis of Co Tadesse G; Ananda Murthy HC; Ravikumar CR; Naveen Kumar T; Teshome L; Desalegn T Bioinorg Chem Appl; 2023; 2023():5019838. PubMed ID: 38075557 [TBL] [Abstract][Full Text] [Related]
4. Conjugation of micro/nanocurcumin particles to ZnO nanoparticles changes the surface charge and hydrodynamic size thereby enhancing its antibacterial activity against Escherichia coli and Staphylococcus aureus. Shome S; Talukdar AD; Tewari S; Choudhury S; Bhattacharya MK; Upadhyaya H Biotechnol Appl Biochem; 2021 Jun; 68(3):603-615. PubMed ID: 32533898 [TBL] [Abstract][Full Text] [Related]
5. The Decoration of ZnO Nanoparticles by Gamma Aminobutyric Acid, Curcumin Derivative and Silver Nanoparticles: Synthesis, Characterization and Antibacterial Evaluation. Talodthaisong C; Plaeyao K; Mongseetong C; Boonta W; Srichaiyapol O; Patramanon R; Kayunkid N; Kulchat S Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33572431 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria. Yusof NAA; Zain NM; Pauzi N Int J Biol Macromol; 2019 Mar; 124():1132-1136. PubMed ID: 30496864 [TBL] [Abstract][Full Text] [Related]
7. Phytofabrication and Characterisation of Zinc Oxide Nanoparticles Using Pure Curcumin. Alallam B; Doolaanea AA; Alfatama M; Lim V Pharmaceuticals (Basel); 2023 Feb; 16(2):. PubMed ID: 37259414 [TBL] [Abstract][Full Text] [Related]
8. Biogenic Au@ZnO core-shell nanocomposites kill Staphylococcus aureus without provoking nuclear damage and cytotoxicity in mouse fibroblasts cells under hyperglycemic condition with enhanced wound healing proficiency. Khan MI; Behera SK; Paul P; Das B; Suar M; Jayabalan R; Fawcett D; Poinern GEJ; Tripathy SK; Mishra A Med Microbiol Immunol; 2019 Oct; 208(5):609-629. PubMed ID: 30291475 [TBL] [Abstract][Full Text] [Related]
9. Antibacterial oxidized starch/ZnO nanocomposite hydrogel: Synthesis and evaluation of its swelling behaviours in various pHs and salt solutions. Namazi H; Hasani M; Yadollahi M Int J Biol Macromol; 2019 Apr; 126():578-584. PubMed ID: 30594626 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels. Yadollahi M; Gholamali I; Namazi H; Aghazadeh M Int J Biol Macromol; 2015 Mar; 74():136-41. PubMed ID: 25524743 [TBL] [Abstract][Full Text] [Related]
11. Desertifilum sp. EAZ03 cell extract as a novel natural source for the biosynthesis of zinc oxide nanoparticles and antibacterial, anticancer and antibiofilm characteristics of synthesized zinc oxide nanoparticles. Ebadi M; Zolfaghari MR; Aghaei SS; Zargar M; Noghabi KA J Appl Microbiol; 2022 Jan; 132(1):221-236. PubMed ID: 34101961 [TBL] [Abstract][Full Text] [Related]
13. ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. Banoee M; Seif S; Nazari ZE; Jafari-Fesharaki P; Shahverdi HR; Moballegh A; Moghaddam KM; Shahverdi AR J Biomed Mater Res B Appl Biomater; 2010 May; 93(2):557-61. PubMed ID: 20225250 [TBL] [Abstract][Full Text] [Related]
14. Mycogenic Synthesis of Extracellular Zinc Oxide Nanoparticles from Sumanth B; Lakshmeesha TR; Ansari MA; Alzohairy MA; Udayashankar AC; Shobha B; Niranjana SR; Srinivas C; Almatroudi A Int J Nanomedicine; 2020; 15():8519-8536. PubMed ID: 33173290 [TBL] [Abstract][Full Text] [Related]
15. Biomolecule chitosan, curcumin and ZnO-based antibacterial nanomaterial, via a one-pot process. Karthikeyan C; Varaprasad K; Akbari-Fakhrabadi A; Hameed ASH; Sadiku R Carbohydr Polym; 2020 Dec; 249():116825. PubMed ID: 32933672 [TBL] [Abstract][Full Text] [Related]
16. Salt Leaching Synthesis, Characterization and Kanimozhi K; Basha SK; Kaviyarasu K; SuganthaKumari V J Nanosci Nanotechnol; 2019 Aug; 19(8):4447-4457. PubMed ID: 30913735 [TBL] [Abstract][Full Text] [Related]
17. Characterization of green synthesized nano-formulation (ZnO-A. vera) and their antibacterial activity against pathogens. Qian Y; Yao J; Russel M; Chen K; Wang X Environ Toxicol Pharmacol; 2015 Mar; 39(2):736-46. PubMed ID: 25723342 [TBL] [Abstract][Full Text] [Related]
20. Green synthesis of ZnO nanoparticles using a Dysphania ambrosioides extract. Structural characterization and antibacterial properties. Álvarez-Chimal R; García-Pérez VI; Álvarez-Pérez MA; Arenas-Alatorre JÁ Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111540. PubMed ID: 33255092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]