These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31131317)

  • 1. Hoatzin nestling locomotion: Acquisition of quadrupedal limb coordination in birds.
    Abourachid A; Herrel A; Decamps T; Pages F; Fabre AC; Van Hoorebeke L; Adriaens D; Garcia Amado MA
    Sci Adv; 2019 May; 5(5):eaat0787. PubMed ID: 31131317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Bipedalism in birds, a determining feature for their adaptive success].
    Abourachid A
    J Soc Biol; 2006; 200(2):169-75. PubMed ID: 17151552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wings versus legs in the avian bauplan: development and evolution of alternative locomotor strategies.
    Heers AM; Dial KP
    Evolution; 2015 Feb; 69(2):305-20. PubMed ID: 25494705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development.
    Heers AM; Baier DB; Jackson BE; Dial KP
    PLoS One; 2016; 11(4):e0153446. PubMed ID: 27100994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facultative adjustment of pre-fledging mass loss by nestling swifts preparing for flight.
    Wright J; Markman S; Denney SM
    Proc Biol Sci; 2006 Aug; 273(1596):1895-900. PubMed ID: 16822749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wing-assisted incline running and the evolution of flight.
    Dial KP
    Science; 2003 Jan; 299(5605):402-4. PubMed ID: 12532020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wing bone geometry reveals active flight in Archaeopteryx.
    Voeten DFAE; Cubo J; de Margerie E; Röper M; Beyrand V; Bureš S; Tafforeau P; Sanchez S
    Nat Commun; 2018 Mar; 9(1):923. PubMed ID: 29535376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of avian flapping motion from non-volant winged dinosaurs based on modal effective mass analysis.
    Talori YS; Zhao JS; Liu YF; Lu WX; Li ZH; O'Connor JK
    PLoS Comput Biol; 2019 May; 15(5):e1006846. PubMed ID: 31048911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flapping wing aerodynamics: from insects to vertebrates.
    Chin DD; Lentink D
    J Exp Biol; 2016 Apr; 219(Pt 7):920-32. PubMed ID: 27030773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forelimb posture in dinosaurs and the evolution of the avian flapping flight-stroke.
    Nudds RL; Dyke GJ
    Evolution; 2009 Apr; 63(4):994-1002. PubMed ID: 19154383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A kinematic synergy for terrestrial locomotion shared by mammals and birds.
    Catavitello G; Ivanenko Y; Lacquaniti F
    Elife; 2018 Oct; 7():. PubMed ID: 30376448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic schooling of flapping swimmers.
    Becker AD; Masoud H; Newbolt JW; Shelley M; Ristroph L
    Nat Commun; 2015 Oct; 6():8514. PubMed ID: 26439509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds.
    Klaassen van Oorschot B; Mistick EA; Tobalske BW
    J Exp Biol; 2016 Oct; 219(Pt 19):3146-3154. PubMed ID: 27473437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordination of wingbeat and respiration in birds. II. "Fictive" flight.
    Funk GD; Steeves JD; Milsom WK
    J Appl Physiol (1985); 1992 Sep; 73(3):1025-33. PubMed ID: 1400013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of avian flight: muscles and constraints on performance.
    Tobalske BW
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and flight performance of a biologically-inspired tailless flapping-wing micro air vehicle with wing stroke plane modulation.
    Nguyen QV; Chan WL
    Bioinspir Biomim; 2018 Dec; 14(1):016015. PubMed ID: 30523879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Range of motion in the avian wing is strongly associated with flight behavior and body mass.
    Baliga VB; Szabo I; Altshuler DL
    Sci Adv; 2019 Oct; 5(10):eaaw6670. PubMed ID: 31681840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematic compensation for wing loss in flying damselflies.
    Kassner Z; Dafni E; Ribak G
    J Insect Physiol; 2016 Feb; 85():1-9. PubMed ID: 26598807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.