These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 31131324)

  • 1. Colorectal tumor-on-a-chip system: A 3D tool for precision onco-nanomedicine.
    Carvalho MR; Barata D; Teixeira LM; Giselbrecht S; Reis RL; Oliveira JM; Truckenmüller R; Habibovic P
    Sci Adv; 2019 May; 5(5):eaaw1317. PubMed ID: 31131324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications.
    Capretto L; Carugo D; Mazzitelli S; Nastruzzi C; Zhang X
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1496-532. PubMed ID: 23933616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation.
    Gimondi S; Ferreira H; Reis RL; Neves NM
    ACS Nano; 2023 Aug; 17(15):14205-14228. PubMed ID: 37498731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic-Based Platform for the Evaluation of Nanomaterial-Mediated Drug Delivery: From High-Throughput Screening to Dynamic Monitoring.
    Yang Y; Liu S; Geng J
    Curr Pharm Des; 2019; 25(27):2953-2968. PubMed ID: 31362686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organ-on-chip models of cancer metastasis for future personalized medicine: From chip to the patient.
    Caballero D; Kaushik S; Correlo VM; Oliveira JM; Reis RL; Kundu SC
    Biomaterials; 2017 Dec; 149():98-115. PubMed ID: 29024838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood-Vessel-on-a-Chip Platforms for Evaluating Nanoparticle Drug Delivery Systems.
    Li Y; Zhu K; Liu X; Zhang YS
    Curr Drug Metab; 2018; 19(2):100-109. PubMed ID: 28952434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro humanized 3D microfluidic chip for testing personalized immunotherapeutics for head and neck cancer patients.
    Al-Samadi A; Poor B; Tuomainen K; Liu V; Hyytiäinen A; Suleymanova I; Mesimaki K; Wilkman T; Mäkitie A; Saavalainen P; Salo T
    Exp Cell Res; 2019 Oct; 383(2):111508. PubMed ID: 31356815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics for studying metastatic patterns of lung cancer.
    Ruzycka M; Cimpan MR; Rios-Mondragon I; Grudzinski IP
    J Nanobiotechnology; 2019 May; 17(1):71. PubMed ID: 31133019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel and large-scale antitumor investigation using stable chemical gradient and heterotypic three-dimensional tumor coculture in a multi-layered microfluidic device.
    Liu W; Hu R; Han K; Sun M; Liu D; Zhang J; Wang J
    Biotechnol J; 2021 Oct; 16(10):e2000655. PubMed ID: 34218506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organ-on-a-Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine.
    Rodrigues RO; Sousa PC; Gaspar J; Bañobre-López M; Lima R; Minas G
    Small; 2020 Dec; 16(51):e2003517. PubMed ID: 33236819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment.
    Jeong SY; Lee JH; Shin Y; Chung S; Kuh HJ
    PLoS One; 2016; 11(7):e0159013. PubMed ID: 27391808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a biomimetic liver tumor-on-a-chip model based on decellularized liver matrix for toxicity testing.
    Lu S; Cuzzucoli F; Jiang J; Liang LG; Wang Y; Kong M; Zhao X; Cui W; Li J; Wang S
    Lab Chip; 2018 Nov; 18(22):3379-3392. PubMed ID: 30298144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organ-on-chip systems as a model for nanomedicine.
    Stavrou M; Phung N; Grimm J; Andreou C
    Nanoscale; 2023 Jun; 15(23):9927-9940. PubMed ID: 37254663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor-on-a-chip model for advancement of anti-cancer nano drug delivery system.
    Tian C; Zheng S; Liu X; Kamei KI
    J Nanobiotechnology; 2022 Jul; 20(1):338. PubMed ID: 35858898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic Nanotechnology toward Personalized Vaccines.
    Zhou J; Kroll AV; Holay M; Fang RH; Zhang L
    Adv Mater; 2020 Apr; 32(13):e1901255. PubMed ID: 31206841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor-on-a-chip platforms for assessing nanoparticle-based cancer therapy.
    Wang Y; Cuzzucoli F; Escobar A; Lu S; Liang L; Wang S
    Nanotechnology; 2018 Aug; 29(33):332001. PubMed ID: 29794338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Microfluidic Platform and Tumor Vascular Mapping for Evaluating Anti-Angiogenic RNAi-Based Nanomedicine.
    Lee S; Kim S; Koo DJ; Yu J; Cho H; Lee H; Song JM; Kim SY; Min DH; Jeon NL
    ACS Nano; 2021 Jan; 15(1):338-350. PubMed ID: 33231435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetics: From Bioinformatics to Rational Design of Dendrimers as Gene Carriers.
    Márquez-Miranda V; Camarada MB; Araya-Durán I; Varas-Concha I; Almonacid DE; González-Nilo FD
    PLoS One; 2015; 10(9):e0138392. PubMed ID: 26382062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput 3D Tumor Culture in a Recyclable Microfluidic Platform.
    Liu W; Wang J
    Methods Mol Biol; 2017; 1612():293-301. PubMed ID: 28634952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unmet needs in developing nanoparticles for precision medicine.
    Schwartz S
    Nanomedicine (Lond); 2017 Feb; 12(4):271-274. PubMed ID: 28093937
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.