These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31131340)

  • 1. Static Preload Inhibits Loading-Induced Bone Formation.
    Srinivasan S; Balsiger D; Huber P; Ausk BJ; Bain SD; Gardiner EM; Gross TS
    JBMR Plus; 2019 May; 3(5):e10087. PubMed ID: 31131340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aging diminishes lamellar and woven bone formation induced by tibial compression in adult C57BL/6.
    Holguin N; Brodt MD; Sanchez ME; Silva MJ
    Bone; 2014 Aug; 65():83-91. PubMed ID: 24836737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of loading parameters for murine axial tibial loading: Stimulating cortical bone formation while reducing loading duration.
    Sun D; Brodt MD; Zannit HM; Holguin N; Silva MJ
    J Orthop Res; 2018 Feb; 36(2):682-691. PubMed ID: 28888055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beta 2 Adrenergic Receptor Selective Antagonist Enhances Mechanically Stimulated Bone Anabolism in Aged Mice.
    E Worton L; Srinivasan S; Threet D; Ausk BJ; Huber P; Y Kwon R; Bain SD; Gross TS; M Gardiner E
    JBMR Plus; 2023 Feb; 7(2):e10712. PubMed ID: 36751418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical and trabecular bone adaptation to incremental load magnitudes using the mouse tibial axial compression loading model.
    Weatherholt AM; Fuchs RK; Warden SJ
    Bone; 2013 Jan; 52(1):372-9. PubMed ID: 23111313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protective Effects of Controlled Mechanical Loading of Bone in C57BL6/J Mice Subject to Disuse.
    DeLong A; Friedman MA; Tucker SM; Krause AR; Kunselman A; Donahue HJ; Lewis GS
    JBMR Plus; 2020 Mar; 4(3):e10322. PubMed ID: 32161839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone mass is preserved and cancellous architecture altered due to cyclic loading of the mouse tibia after orchidectomy.
    Fritton JC; Myers ER; Wright TM; van der Meulen MC
    J Bone Miner Res; 2008 May; 23(5):663-71. PubMed ID: 18433300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolated Cyclic Loading During Adolescence Improves Tibial Bone Microstructure and Strength at Adulthood.
    Mustafy T; Londono I; Moldovan F; Villemure I
    JBMR Plus; 2020 Apr; 4(4):e10349. PubMed ID: 32258967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mice lacking thrombospondin 2 show an atypical pattern of endocortical and periosteal bone formation in response to mechanical loading.
    Hankenson KD; Ausk BJ; Bain SD; Bornstein P; Gross TS; Srinivasan S
    Bone; 2006 Mar; 38(3):310-6. PubMed ID: 16290255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proliferation and Activation of Osterix-Lineage Cells Contribute to Loading-Induced Periosteal Bone Formation in Mice.
    Zannit HM; Silva MJ
    JBMR Plus; 2019 Nov; 3(11):e10227. PubMed ID: 31768488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aged mice have enhanced endocortical response and normal periosteal response compared with young-adult mice following 1 week of axial tibial compression.
    Brodt MD; Silva MJ
    J Bone Miner Res; 2010 Sep; 25(9):2006-15. PubMed ID: 20499381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tibial loading increases osteogenic gene expression and cortical bone volume in mature and middle-aged mice.
    Silva MJ; Brodt MD; Lynch MA; Stephens AL; Wood DJ; Civitelli R
    PLoS One; 2012; 7(4):e34980. PubMed ID: 22514696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Old Mice Have Less Transcriptional Activation But Similar Periosteal Cell Proliferation Compared to Young-Adult Mice in Response to in vivo Mechanical Loading.
    Chermside-Scabbo CJ; Harris TL; Brodt MD; Braenne I; Zhang B; Farber CR; Silva MJ
    J Bone Miner Res; 2020 Sep; 35(9):1751-1764. PubMed ID: 32311160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth hormone is permissive for skeletal adaptation to mechanical loading.
    Forwood MR; Li L; Kelly WL; Bennett MB
    J Bone Miner Res; 2001 Dec; 16(12):2284-90. PubMed ID: 11760843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rest-inserted loading rapidly amplifies the response of bone to small increases in strain and load cycles.
    Srinivasan S; Ausk BJ; Poliachik SL; Warner SE; Richardson TS; Gross TS
    J Appl Physiol (1985); 2007 May; 102(5):1945-52. PubMed ID: 17255366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic hydraulic flow stimulation on mitigation of trabecular bone loss in a rat functional disuse model.
    Hu M; Cheng J; Qin YX
    Bone; 2012 Oct; 51(4):819-25. PubMed ID: 22820398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of Wnt Signaling by Mechanical Loading Is Impaired in the Bone of Old Mice.
    Holguin N; Brodt MD; Silva MJ
    J Bone Miner Res; 2016 Dec; 31(12):2215-2226. PubMed ID: 27357062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain rate influences periosteal adaptation in mature bone.
    LaMothe JM; Hamilton NH; Zernicke RF
    Med Eng Phys; 2005 May; 27(4):277-84. PubMed ID: 15823468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sympathetic nervous system does not mediate the load-induced cortical new bone formation.
    de Souza RL; Pitsillides AA; Lanyon LE; Skerry TM; Chenu C
    J Bone Miner Res; 2005 Dec; 20(12):2159-68. PubMed ID: 16294269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone adaptation to mechanical loading in a mouse model of reduced peripheral sensory nerve function.
    Heffner MA; Genetos DC; Christiansen BA
    PLoS One; 2017; 12(10):e0187354. PubMed ID: 29088267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.