BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 31131470)

  • 21. Structural and functional characterization of mercuric reductase from Lysinibacillus sphaericus strain G1.
    Bafana A; Khan F; Suguna K
    Biometals; 2017 Oct; 30(5):809-819. PubMed ID: 28894951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NfoR: Chromate Reductase or Flavin Mononucleotide Reductase?
    O'Neill AG; Beaupre BA; Zheng Y; Liu D; Moran GR
    Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32887719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A bacterial flavin reductase system reduces chromate to a soluble chromium(III)-NAD(+) complex.
    Puzon GJ; Petersen JN; Roberts AG; Kramer DM; Xun L
    Biochem Biophys Res Commun; 2002 May; 294(1):76-81. PubMed ID: 12054743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing the binding mechanism of mercaptoguanine derivatives as inhibitors of HPPK by docking and molecular dynamics simulations.
    Marimuthu P; Singaravelu K; Namasivayam V
    J Biomol Struct Dyn; 2017 Dec; 35(16):3507-3521. PubMed ID: 27844507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structures of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP+.
    Chiu HJ; Johnson E; Schröder I; Rees DC
    Structure; 2001 Apr; 9(4):311-9. PubMed ID: 11525168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The FMN-binding domain of cytochrome P450BM-3: resolution, reconstitution, and flavin analogue substitution.
    Haines DC; Sevrioukova IF; Peterson JA
    Biochemistry; 2000 Aug; 39(31):9419-29. PubMed ID: 10924137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of helix and fingertip mutations on the thermostability of xyn11A investigated by molecular dynamics simulations and enzyme activity assays.
    Sutthibutpong T; Rattanarojpong T; Khunrae P
    J Biomol Struct Dyn; 2018 Nov; 36(15):3978-3992. PubMed ID: 29129140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MD and QM/MM studies on long-chain L-α-hydroxy acid oxidase: substrate binding features and oxidation mechanism.
    Cao Y; Han S; Yu L; Qian H; Chen JZ
    J Phys Chem B; 2014 May; 118(20):5406-17. PubMed ID: 24801764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure analysis of the flavoredoxin from Desulfovibrio vulgaris Miyazaki F reveals key residues that discriminate the functions and properties of the flavin reductase family.
    Shibata N; Ueda Y; Takeuchi D; Haruyama Y; Kojima S; Sato J; Niimura Y; Kitamura M; Higuchi Y
    FEBS J; 2009 Sep; 276(17):4840-53. PubMed ID: 19708087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure and function of YcnD from Bacillus subtilis, a flavin-containing oxidoreductase.
    Morokutti A; Lyskowski A; Sollner S; Pointner E; Fitzpatrick TB; Kratky C; Gruber K; Macheroux P
    Biochemistry; 2005 Oct; 44(42):13724-33. PubMed ID: 16229462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure of NAD(P)H:flavin oxidoreductase from Escherichia coli.
    Ingelman M; Ramaswamy S; Nivière V; Fontecave M; Eklund H
    Biochemistry; 1999 Jun; 38(22):7040-9. PubMed ID: 10353815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure analysis, covalent docking, and molecular dynamics calculations reveal a conformational switch in PhaZ7 PHB depolymerase.
    Kellici TF; Mavromoustakos T; Jendrossek D; Papageorgiou AC
    Proteins; 2017 Jul; 85(7):1351-1361. PubMed ID: 28370478
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrostatics and water occlusion regulate covalently-bound flavin mononucleotide cofactors of Vibrio cholerae respiratory complex NQR.
    Willow SY; Yuan M; Juárez O; Minh DDL
    Proteins; 2021 Oct; 89(10):1376-1385. PubMed ID: 34091964
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism and substrate specificity of the flavin reductase ActVB from Streptomyces coelicolor.
    Filisetti L; Fontecave M; Niviere V
    J Biol Chem; 2003 Jan; 278(1):296-303. PubMed ID: 12417584
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loop 6 and the β-hairpin flap are structural hotspots that determine cofactor specificity in the FMN-dependent family of ene-reductases.
    Kerschbaumer B; Totaro MG; Friess M; Breinbauer R; Bijelic A; Macheroux P
    FEBS J; 2024 Apr; 291(7):1560-1574. PubMed ID: 38263933
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parallel pathways and free-energy landscapes for enzymatic hydride transfer probed by hydrostatic pressure.
    Pudney CR; McGrory T; Lafite P; Pang J; Hay S; Leys D; Sutcliffe MJ; Scrutton NS
    Chembiochem; 2009 May; 10(8):1379-84. PubMed ID: 19405065
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structures of Mycobacterium tuberculosispyridoxine 5'-phosphate oxidase and its complexes with flavin mononucleotide and pyridoxal 5'-phosphate.
    Biswal BK; Cherney MM; Wang M; Garen C; James MN
    Acta Crystallogr D Biol Crystallogr; 2005 Nov; 61(Pt 11):1492-9. PubMed ID: 16239726
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flavin mononucleotide-binding domain of the flavoprotein component of the sulfite reductase from Escherichia coli.
    Coves J; Zeghouf M; Macherel D; Guigliarelli B; Asso M; Fontecave M
    Biochemistry; 1997 May; 36(19):5921-8. PubMed ID: 9153434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How FMN binds to anabaena apoflavodoxin: a hydrophobic encounter at an open binding site.
    Lostao A; Daoudi F; Irún MP; Ramon A; Fernández-Cabrera C; Romero A; Sancho J
    J Biol Chem; 2003 Jun; 278(26):24053-61. PubMed ID: 12682068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How does pressure affect barrier compression and isotope effects in an enzymatic hydrogen tunneling reaction?
    Johannissen LO; Scrutton NS; Sutcliffe MJ
    Angew Chem Int Ed Engl; 2011 Feb; 50(9):2129-32. PubMed ID: 21344567
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.