These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31131875)

  • 1. Micropatterned substrates with physiological stiffness promote cell maturation and Pompe disease phenotype in human induced pluripotent stem cell-derived skeletal myocytes.
    Jiwlawat N; Lynch EM; Napiwocki BN; Stempien A; Ashton RS; Kamp TJ; Crone WC; Suzuki M
    Biotechnol Bioeng; 2019 Sep; 116(9):2377-2392. PubMed ID: 31131875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Scale Expansion of Human iPSC-Derived Skeletal Muscle Cells for Disease Modeling and Cell-Based Therapeutic Strategies.
    van der Wal E; Herrero-Hernandez P; Wan R; Broeders M; In 't Groen SLM; van Gestel TJM; van IJcken WFJ; Cheung TH; van der Ploeg AT; Schaaf GJ; Pijnappel WWMP
    Stem Cell Reports; 2018 Jun; 10(6):1975-1990. PubMed ID: 29731431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pompe disease results in a Golgi-based glycosylation deficit in human induced pluripotent stem cell-derived cardiomyocytes.
    Raval KK; Tao R; White BE; De Lange WJ; Koonce CH; Yu J; Kishnani PS; Thomson JA; Mosher DF; Ralphe JC; Kamp TJ
    J Biol Chem; 2015 Jan; 290(5):3121-36. PubMed ID: 25488666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolomic Profiling of Pompe Disease-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Reveals That Oxidative Stress Is Associated with Cardiac and Skeletal Muscle Pathology.
    Sato Y; Kobayashi H; Higuchi T; Shimada Y; Ida H; Ohashi T
    Stem Cells Transl Med; 2017 Jan; 6(1):31-39. PubMed ID: 28170191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Skeletal Muscle Model of Infantile-onset Pompe Disease with Patient-specific iPS Cells.
    Yoshida T; Awaya T; Jonouchi T; Kimura R; Kimura S; Era T; Heike T; Sakurai H
    Sci Rep; 2017 Oct; 7(1):13473. PubMed ID: 29044175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification.
    Huang HP; Chen PH; Hwu WL; Chuang CY; Chien YH; Stone L; Chien CL; Li LT; Chiang SC; Chen HF; Ho HN; Chen CH; Kuo HC
    Hum Mol Genet; 2011 Dec; 20(24):4851-64. PubMed ID: 21926084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of Functional Myocytes from Equine Induced Pluripotent Stem Cells.
    Amilon KR; Cortes-Araya Y; Moore B; Lee S; Lillico S; Breton A; Esteves CL; Donadeu FX
    Cell Reprogram; 2018 Oct; 20(5):275-281. PubMed ID: 30207795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation and sarcomere formation in skeletal myocytes directly prepared from human induced pluripotent stem cells using a sphere-based culture.
    Jiwlawat S; Lynch E; Glaser J; Smit-Oistad I; Jeffrey J; Van Dyke JM; Suzuki M
    Differentiation; 2017; 96():70-81. PubMed ID: 28915407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of induced pluripotent stem (iPS) cells derived from a murine model of Pompe disease and differentiation of Pompe-iPS cells into skeletal muscle cells.
    Kawagoe S; Higuchi T; Meng XL; Shimada Y; Shimizu H; Hirayama R; Fukuda T; Chang H; Nakahata T; Fukada S; Ida H; Kobayashi H; Ohashi T; Eto Y
    Mol Genet Metab; 2011; 104(1-2):123-8. PubMed ID: 21703893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The generation of induced pluripotent stem cells (iPSCs) from patients with infantile and late-onset types of Pompe disease and the effects of treatment with acid-α-glucosidase in Pompe's iPSCs.
    Higuchi T; Kawagoe S; Otsu M; Shimada Y; Kobayashi H; Hirayama R; Eto K; Ida H; Ohashi T; Nakauchi H; Eto Y
    Mol Genet Metab; 2014 May; 112(1):44-8. PubMed ID: 24642446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using human Pompe disease-induced pluripotent stem cell-derived neural cells to identify compounds with therapeutic potential.
    Huang HP; Chiang W; Stone L; Kang CK; Chuang CY; Kuo HC
    Hum Mol Genet; 2019 Dec; 28(23):3880-3894. PubMed ID: 31518394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Protocol for Directed Differentiation of C9orf72-Associated Human Induced Pluripotent Stem Cells Into Contractile Skeletal Myotubes.
    Swartz EW; Baek J; Pribadi M; Wojta KJ; Almeida S; Karydas A; Gao FB; Miller BL; Coppola G
    Stem Cells Transl Med; 2016 Nov; 5(11):1461-1472. PubMed ID: 27369896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recapitulating muscle disease phenotypes with myotonic dystrophy 1 induced pluripotent stem cells: a tool for disease modeling and drug discovery.
    Mondragon-Gonzalez R; Perlingeiro RCR
    Dis Model Mech; 2018 Jul; 11(7):. PubMed ID: 29898953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contraction Control of Aligned Myofiber Sheet Tissue by Parallel Oriented Induced Pluripotent Stem Cell-Derived Neurons.
    Takahashi H; Oikawa F; Takeda N; Shimizu T
    Tissue Eng Part A; 2022 Aug; 28(15-16):661-671. PubMed ID: 35057641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A human induced pluripotent stem cell line (TRNDi007-B) from an infantile onset Pompe patient carrying p.R854X mutation in the GAA gene.
    Cheng YS; Li R; Baskfield A; Beers J; Zou J; Liu C; Zheng W
    Stem Cell Res; 2019 May; 37():101435. PubMed ID: 31026687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Vitro Maturation of Human Pluripotent Stem Cell-Derived Myotubes.
    Mondragon-Gonzalez R; Selvaraj S; Perlingeiro RCR
    Methods Mol Biol; 2023; 2640():129-142. PubMed ID: 36995592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and characterisation of neuromuscular junctions between hiPSC derived motoneurons and myotubes.
    Demestre M; Orth M; Föhr KJ; Achberger K; Ludolph AC; Liebau S; Boeckers TM
    Stem Cell Res; 2015 Sep; 15(2):328-36. PubMed ID: 26255853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined substrate micropatterning and FFT analysis reveals myotube size control and alignment by contact guidance.
    Vajanthri KY; Sidu RK; Poddar S; Singh AK; Mahto SK
    Cytoskeleton (Hoboken); 2019 Mar; 76(3):269-285. PubMed ID: 31074945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing iPSC-CM Maturation Using a Matrigel-Coated Micropatterned PDMS Substrate.
    Jimenez-Vazquez EN; Jain A; Jones DK
    Curr Protoc; 2022 Nov; 2(11):e601. PubMed ID: 36383047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of the excitation-contraction coupling machinery and its relation to myofibrillogenesis in human iPSC-derived skeletal myocytes.
    Lainé J; Skoglund G; Fournier E; Tabti N
    Skelet Muscle; 2018 Jan; 8(1):1. PubMed ID: 29304851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.