BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31131927)

  • 1. On the Metal Cooperativity in a Dinuclear Copper-Guanidine Complex for Aliphatic C-H Bond Cleavage by Dioxygen.
    Schön F; Biebl F; Greb L; Leingang S; Grimm-Lebsanft B; Teubner M; Buchenau S; Kaifer E; Rübhausen MA; Himmel HJ
    Chemistry; 2019 Aug; 25(48):11257-11268. PubMed ID: 31131927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active site models for the Cu(A) site of peptidylglycine α-hydroxylating monooxygenase and dopamine β-monooxygenase.
    Kunishita A; Ertem MZ; Okubo Y; Tano T; Sugimoto H; Ohkubo K; Fujieda N; Fukuzumi S; Cramer CJ; Itoh S
    Inorg Chem; 2012 Sep; 51(17):9465-80. PubMed ID: 22908844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Spectroscopic definition of the resting sites and the putative CuIIM-OOH intermediate.
    Chen P; Bell J; Eipper BA; Solomon EI
    Biochemistry; 2004 May; 43(19):5735-47. PubMed ID: 15134448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.
    Itoh S
    Acc Chem Res; 2015 Jul; 48(7):2066-74. PubMed ID: 26086527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dioxygen binds end-on to mononuclear copper in a precatalytic enzyme complex.
    Prigge ST; Eipper BA; Mains RE; Amzel LM
    Science; 2004 May; 304(5672):864-7. PubMed ID: 15131304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Models for dioxygen activation by the CuB site of dopamine beta-monooxygenase and peptidylglycine alpha-hydroxylating monooxygenase.
    Gherman BF; Heppner DE; Tolman WB; Cramer CJ
    J Biol Inorg Chem; 2006 Mar; 11(2):197-205. PubMed ID: 16344970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic M Center of Copper Monooxygenases Probed by Rational Design. Effects of Selenomethionine and Histidine Substitution on Structure and Reactivity.
    Alwan KB; Welch EF; Blackburn NJ
    Biochemistry; 2019 Nov; 58(44):4436-4446. PubMed ID: 31626532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the structure and reactivity of monocopper-oxygen complexes supported by beta-diketiminate and anilido-imine ligands.
    Gherman BF; Tolman WB; Cramer CJ
    J Comput Chem; 2006 Dec; 27(16):1950-61. PubMed ID: 17019721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Reaction mechanism and role of the noncoupled nature of the active site.
    Chen P; Solomon EI
    J Am Chem Soc; 2004 Apr; 126(15):4991-5000. PubMed ID: 15080705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of O2 activation and substrate hydroxylation in noncoupled binuclear copper monooxygenases.
    Cowley RE; Tian L; Solomon EI
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12035-12040. PubMed ID: 27790986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that dioxygen and substrate activation are tightly coupled in dopamine beta-monooxygenase. Implications for the reactive oxygen species.
    Evans JP; Ahn K; Klinman JP
    J Biol Chem; 2003 Dec; 278(50):49691-8. PubMed ID: 12966104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical modelling of tripodal CuN3 and CuN4 cuprous complexes interacting with O2, CO or CH3CN.
    de la Lande A; Gérard H; Moliner V; Izzet G; Reinaud O; Parisel O
    J Biol Inorg Chem; 2006 Jul; 11(5):593-608. PubMed ID: 16791643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the hydroxylation mechanism of noncoupled copper oxygenases by ab initio molecular dynamics simulations.
    Meliá C; Ferrer S; Řezáč J; Parisel O; Reinaud O; Moliner V; de la Lande A
    Chemistry; 2013 Dec; 19(51):17328-37. PubMed ID: 24259416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination of peroxide to the Cu(M) center of peptidylglycine α-hydroxylating monooxygenase (PHM): structural and computational study.
    Rudzka K; Moreno DM; Eipper B; Mains R; Estrin DA; Amzel LM
    J Biol Inorg Chem; 2013 Feb; 18(2):223-232. PubMed ID: 23247335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amidation of bioactive peptides: the structure of peptidylglycine alpha-hydroxylating monooxygenase.
    Prigge ST; Kolhekar AS; Eipper BA; Mains RE; Amzel LM
    Science; 1997 Nov; 278(5341):1300-5. PubMed ID: 9360928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of thioether substituents on the O2 reactivity of beta-diketiminate-Cu(I) complexes: probing the role of the methionine ligand in copper monooxygenases.
    Aboelella NW; Gherman BF; Hill LM; York JT; Holm N; Young VG; Cramer CJ; Tolman WB
    J Am Chem Soc; 2006 Mar; 128(10):3445-58. PubMed ID: 16522125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into dioxygen-activating copper enzymes.
    Rosenzweig AC; Sazinsky MH
    Curr Opin Struct Biol; 2006 Dec; 16(6):729-35. PubMed ID: 17011183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can an ancillary ligand lead to a thermodynamically stable end-on 1 : 1 Cu-O2 adduct supported by a beta-diketiminate ligand?
    Heppner DE; Gherman BF; Tolman WB; Cramer CJ
    Dalton Trans; 2006 Oct; (40):4773-82. PubMed ID: 17033702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How do copper enzymes hydroxylate aliphatic substrates? Recent insights from the chemistry of model systems.
    Rolff M; Tuczek F
    Angew Chem Int Ed Engl; 2008; 47(13):2344-7. PubMed ID: 18330847
    [No Abstract]   [Full Text] [Related]  

  • 20. The catalytic role of the copper ligand H172 of peptidylglycine alpha-hydroxylating monooxygenase: a kinetic study of the H172A mutant.
    Evans JP; Blackburn NJ; Klinman JP
    Biochemistry; 2006 Dec; 45(51):15419-29. PubMed ID: 17176064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.