These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31131939)

  • 1. Horizontal force production and multi-segment foot kinematics during the acceleration phase of bend sprinting.
    Judson LJ; Churchill SM; Barnes A; Stone JA; Brookes IGA; Wheat J
    Scand J Med Sci Sports; 2019 Oct; 29(10):1563-1571. PubMed ID: 31131939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint moments and power in the acceleration phase of bend sprinting.
    Judson LJ; Churchill SM; Barnes A; Stone JA; Wheat J
    J Biomech; 2020 Mar; 101():109632. PubMed ID: 31987576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematic modifications of the lower limb during the acceleration phase of bend sprinting.
    Judson LJ; Churchill SM; Barnes A; Stone JA; Brookes IGA; Wheat J
    J Sports Sci; 2020 Feb; 38(3):336-342. PubMed ID: 31795818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force production during maximal effort bend sprinting: Theory vs reality.
    Churchill SM; Trewartha G; Bezodis IN; Salo AI
    Scand J Med Sci Sports; 2016 Oct; 26(10):1171-9. PubMed ID: 26408499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lower extremity kinematics of athletics curve sprinting.
    Alt T; Heinrich K; Funken J; Potthast W
    J Sports Sci; 2015; 33(6):552-60. PubMed ID: 25495196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of bend sprinting kinematics with three-dimensional motion capture: a test-retest reliability study.
    Judson LJ; Churchill SM; Barnes A; Stone JA; Brookes IGA; Wheat J
    Sports Biomech; 2020 Dec; 19(6):761-777. PubMed ID: 30274542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of the bend on technique and performance during maximal effort sprinting.
    Churchill SM; Salo AI; Trewartha G
    Sports Biomech; 2015 Mar; 14(1):106-21. PubMed ID: 25896099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lower limb joint kinetics during the first stance phase in athletics sprinting: three elite athlete case studies.
    Bezodis NE; Salo AI; Trewartha G
    J Sports Sci; 2014; 32(8):738-46. PubMed ID: 24359568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Harness Attachment Point on Kinetics and Kinematics During Sled Towing.
    Bentley I; Atkins SJ; Edmundson CJ; Metcalfe J; Sinclair JK
    J Strength Cond Res; 2016 Mar; 30(3):768-76. PubMed ID: 26332776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human foot muscle strength and its association with sprint acceleration, cutting and jumping performance, and kinetics in high-level athletes.
    Tourillon R; Michel A; Fourchet F; Edouard P; Morin JB
    J Sports Sci; 2024 May; 42(9):814-824. PubMed ID: 38874271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metatarsophalangeal joint function during sprinting: a comparison of barefoot and sprint spike shod foot conditions.
    Smith G; Lake M; Lees A
    J Appl Biomech; 2014 Apr; 30(2):206-12. PubMed ID: 24042098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical energy contribution of the metatarsophalangeal joint to running and sprinting.
    Stefanyshyn DJ; Nigg BM
    J Biomech; 1997; 30(11-12):1081-5. PubMed ID: 9456374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical Insights Into Differences Between the Mid-Acceleration and Maximum Velocity Phases of Sprinting.
    Yu J; Sun Y; Yang C; Wang D; Yin K; Herzog W; Liu Y
    J Strength Cond Res; 2016 Jul; 30(7):1906-16. PubMed ID: 27331914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foot and ankle kinematics in chronic ankle instability subjects using a midfoot strike pattern when running, including influence of taping.
    Deschamps K; Matricali GA; Dingenen B; De Boeck J; Bronselaer S; Staes F
    Clin Biomech (Bristol, Avon); 2018 May; 54():1-7. PubMed ID: 29501914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related differences in kinematics and kinetics of sprinting in young female.
    Nagahara R; Haramura M; Takai Y; Oliver JL; Wichitaksorn N; Sommerfield LM; Cronin JB
    Scand J Med Sci Sports; 2019 Jun; 29(6):800-807. PubMed ID: 30697820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of forefoot and arch posting orthotic designs on first metatarsophalangeal joint kinematics during gait.
    Nawoczenski DA; Ludewig PM
    J Orthop Sports Phys Ther; 2004 Jun; 34(6):317-27. PubMed ID: 15233393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ground reaction force across the transition during sprint acceleration.
    Nagahara R; Kanehisa H; Fukunaga T
    Scand J Med Sci Sports; 2020 Mar; 30(3):450-461. PubMed ID: 31705835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How sprinters accelerate beyond the velocity plateau of soccer players: Waveform analysis of ground reaction forces.
    Colyer SL; Nagahara R; Takai Y; Salo AIT
    Scand J Med Sci Sports; 2018 Dec; 28(12):2527-2535. PubMed ID: 30230037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint kinematics and ground reaction forces in overground versus treadmill graded running.
    Firminger CR; Vernillo G; Savoldelli A; Stefanyshyn DJ; Millet GY; Edwards WB
    Gait Posture; 2018 Jun; 63():109-113. PubMed ID: 29729612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the effect of touchdown distance and ankle joint kinematics on sprint acceleration performance through computer simulation.
    Bezodis NE; Trewartha G; Salo AI
    Sports Biomech; 2015 Jun; 14(2):232-45. PubMed ID: 26102345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.