BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2262 related articles for article (PubMed ID: 31132144)

  • 1. Computationally efficient deep neural network for computed tomography image reconstruction.
    Wu D; Kim K; Li Q
    Med Phys; 2019 Nov; 46(11):4763-4776. PubMed ID: 31132144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High quality imaging from sparsely sampled computed tomography data with deep learning and wavelet transform in various domains.
    Lee D; Choi S; Kim HJ
    Med Phys; 2019 Jan; 46(1):104-115. PubMed ID: 30362117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-dose CT reconstruction with Noise2Noise network and testing-time fine-tuning.
    Wu D; Kim K; Li Q
    Med Phys; 2021 Dec; 48(12):7657-7672. PubMed ID: 34791655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.
    Kang E; Min J; Ye JC
    Med Phys; 2017 Oct; 44(10):e360-e375. PubMed ID: 29027238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CNN-Based Projected Gradient Descent for Consistent CT Image Reconstruction.
    Gupta H; Jin KH; Nguyen HQ; McCann MT; Unser M
    IEEE Trans Med Imaging; 2018 Jun; 37(6):1440-1453. PubMed ID: 29870372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.
    Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH
    Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy.
    Olberg S; Zhang H; Kennedy WR; Chun J; Rodriguez V; Zoberi I; Thomas MA; Kim JS; Mutic S; Green OL; Park JC
    Med Phys; 2019 Sep; 46(9):4135-4147. PubMed ID: 31309586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-dose CT reconstruction using spatially encoded nonlocal penalty.
    Kim K; El Fakhri G; Li Q
    Med Phys; 2017 Oct; 44(10):e376-e390. PubMed ID: 29027240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AirNet: Fused analytical and iterative reconstruction with deep neural network regularization for sparse-data CT.
    Chen G; Hong X; Ding Q; Zhang Y; Chen H; Fu S; Zhao Y; Zhang X; Ji H; Wang G; Huang Q; Gao H
    Med Phys; 2020 Jul; 47(7):2916-2930. PubMed ID: 32274793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superiorization-inspired unrolled SART algorithm with U-Net generated perturbations for sparse-view and limited-angle CT reconstruction.
    Jia Y; McMichael N; Mokarzel P; Thompson B; Si D; Humphries T
    Phys Med Biol; 2022 Dec; 67(24):. PubMed ID: 36541524
    [No Abstract]   [Full Text] [Related]  

  • 12. A total variation prior unrolling approach for computed tomography reconstruction.
    Zhang P; Ren S; Liu Y; Gui Z; Shangguan H; Wang Y; Shu H; Chen Y
    Med Phys; 2023 May; 50(5):2816-2834. PubMed ID: 36791315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. End-to-end memory-efficient reconstruction for cone beam CT.
    Moriakov N; Sonke JJ; Teuwen J
    Med Phys; 2023 Dec; 50(12):7579-7593. PubMed ID: 37846969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesizing images from multiple kernels using a deep convolutional neural network.
    Missert AD; Yu L; Leng S; Fletcher JG; McCollough CH
    Med Phys; 2020 Feb; 47(2):422-430. PubMed ID: 31714999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep supervised dictionary learning by algorithm unrolling-Application to fast 2D dynamic MR image reconstruction.
    Kofler A; Pali MC; Schaeffter T; Kolbitsch C
    Med Phys; 2023 May; 50(5):2939-2960. PubMed ID: 36565150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An end-to-end-trainable iterative network architecture for accelerated radial multi-coil 2D cine MR image reconstruction.
    Kofler A; Haltmeier M; Schaeffter T; Kolbitsch C
    Med Phys; 2021 May; 48(5):2412-2425. PubMed ID: 33651398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computed tomography super-resolution using deep convolutional neural network.
    Park J; Hwang D; Kim KY; Kang SK; Kim YK; Lee JS
    Phys Med Biol; 2018 Jul; 63(14):145011. PubMed ID: 29923839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning enabled ultra-fast-pitch acquisition in clinical X-ray computed tomography.
    Gong H; Ren L; Hsieh SS; McCollough CH; Yu L
    Med Phys; 2021 Oct; 48(10):5712-5726. PubMed ID: 34415068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporally downsampled cerebral CT perfusion image restoration using deep residual learning.
    Zhu H; Tong D; Zhang L; Wang S; Wu W; Tang H; Chen Y; Luo L; Zhu J; Li B
    Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):193-201. PubMed ID: 31673961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 114.