These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31132157)

  • 1. Living with observational data in biological anthropology.
    Smith RJ
    Am J Phys Anthropol; 2019 Aug; 169(4):591-598. PubMed ID: 31132157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies.
    Schuler MS; Rose S
    Am J Epidemiol; 2017 Jan; 185(1):65-73. PubMed ID: 27941068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Causal Methods for Observational Research: A Primer.
    Almasi-Hashiani A; Nedjat S; Mansournia MA
    Arch Iran Med; 2018 Apr; 21(4):164-169. PubMed ID: 29693407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods of Public Health Research - Strengthening Causal Inference from Observational Data.
    Hernán MA
    N Engl J Med; 2021 Oct; 385(15):1345-1348. PubMed ID: 34596980
    [No Abstract]   [Full Text] [Related]  

  • 5. A counterfactual approach to bias and effect modification in terms of response types.
    Suzuki E; Mitsuhashi T; Tsuda T; Yamamoto E
    BMC Med Res Methodol; 2013 Jul; 13():101. PubMed ID: 23902658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instrumental variable methods for causal inference.
    Baiocchi M; Cheng J; Small DS
    Stat Med; 2014 Jun; 33(13):2297-340. PubMed ID: 24599889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting and correcting the bias of unmeasured factors using perturbation analysis: a data-mining approach.
    Lee WC
    BMC Med Res Methodol; 2014 Feb; 14():18. PubMed ID: 24499374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bias, Confounding, and Interaction: Lions and Tigers, and Bears, Oh My!
    Vetter TR; Mascha EJ
    Anesth Analg; 2017 Sep; 125(3):1042-1048. PubMed ID: 28817531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Future for Observational Epidemiology: Clarity, Credibility, Transparency.
    Harper S
    Am J Epidemiol; 2019 May; 188(5):840-845. PubMed ID: 30877294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bounding Bias Due to Selection.
    Smith LH; VanderWeele TJ
    Epidemiology; 2019 Jul; 30(4):509-516. PubMed ID: 31033690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Causal inference from experiment and observation.
    Zwahlen M; Salanti G
    Evid Based Ment Health; 2018 Feb; 21(1):34-38. PubMed ID: 29289944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accounting for Confounding in Observational Studies.
    D'Onofrio BM; Sjölander A; Lahey BB; Lichtenstein P; Öberg AS
    Annu Rev Clin Psychol; 2020 May; 16():25-48. PubMed ID: 32384000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Sensitivity analysis method for unmeasured confounding interference in observational study].
    Wang DH; You DF; Huang LL; Zhao Y
    Zhonghua Liu Xing Bing Xue Za Zhi; 2019 Nov; 40(11):1470-1475. PubMed ID: 31838823
    [No Abstract]   [Full Text] [Related]  

  • 15. Causal effects in clinical and epidemiological studies via potential outcomes: concepts and analytical approaches.
    Little RJ; Rubin DB
    Annu Rev Public Health; 2000; 21():121-45. PubMed ID: 10884949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A general approach to evaluating the bias of 2-stage instrumental variable estimators.
    Wan F; Small D; Mitra N
    Stat Med; 2018 May; 37(12):1997-2015. PubMed ID: 29572890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confounding, causality, and confusion: the role of intermediate variables in interpreting observational studies in obstetrics.
    Ananth CV; Schisterman EF
    Am J Obstet Gynecol; 2017 Aug; 217(2):167-175. PubMed ID: 28427805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Squeezing observational data for better causal inference: Methods and examples for prevention research.
    Garcia-Huidobro D; Michael Oakes J
    Int J Psychol; 2017 Apr; 52(2):96-105. PubMed ID: 27094382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bridging observational studies and randomized experiments by embedding the former in the latter.
    Bind MC; Rubin DB
    Stat Methods Med Res; 2019 Jul; 28(7):1958-1978. PubMed ID: 29187059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Causal inference with missing exposure information: Methods and applications to an obstetric study.
    Zhang Z; Liu W; Zhang B; Tang L; Zhang J
    Stat Methods Med Res; 2016 Oct; 25(5):2053-2066. PubMed ID: 24318273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.