These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 31132240)

  • 41. Electrically tuned whispering gallery mode microresonator based on Kagomé photonic crystal fibers infiltrated with nematic liquid crystals.
    Kong F; Yang B; Yang C; Zhang H; Liu B; Liu H; Yu J
    Appl Opt; 2019 Feb; 58(6):1351-1355. PubMed ID: 30874018
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wide tunable shift of the reflection band in dual frequency cholesteric liquid crystals.
    Oton E; Netter E
    Opt Express; 2017 Jun; 25(12):13314-13323. PubMed ID: 28788867
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrically switched color with polymer-stabilized blue-phase liquid crystals.
    Lu SY; Chien LC
    Opt Lett; 2010 Feb; 35(4):562-4. PubMed ID: 20160818
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Continuous wave mirrorless lasing in cholesteric liquid crystals with a pitch gradient across the cell gap.
    Muñoz A; McConney ME; Kosa T; Luchette P; Sukhomlinova L; White TJ; Bunning TJ; Taheri B
    Opt Lett; 2012 Jul; 37(14):2904-6. PubMed ID: 22825173
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.
    Chen CW; Hou CT; Li CC; Jau HC; Wang CT; Hong CL; Guo DY; Wang CY; Chiang SP; Bunning TJ; Khoo IC; Lin TH
    Nat Commun; 2017 Sep; 8(1):727. PubMed ID: 28959009
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals.
    Ha NY; Ohtsuka Y; Jeong SM; Nishimura S; Suzaki G; Takanishi Y; Ishikawa K; Takezoe H
    Nat Mater; 2008 Jan; 7(1):43-7. PubMed ID: 17994028
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tunable photonic band gaps in two-dimensional photonic crystals by temporal modulation based on the Pockels effect.
    Takeda H; Yoshino K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016605. PubMed ID: 14995734
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrically Tunable Soft-Solid Block Copolymer Structural Color.
    Park TJ; Hwang SK; Park S; Cho SH; Park TH; Jeong B; Kang HS; Ryu du Y; Huh J; Thomas EL; Park C
    ACS Nano; 2015 Dec; 9(12):12158-67. PubMed ID: 26505787
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photonics and lasing in liquid crystal materials.
    Palffy-Muhoray P; Cao W; Moreira M; Taheri B; Munoz A
    Philos Trans A Math Phys Eng Sci; 2006 Oct; 364(1847):2747-61. PubMed ID: 16973487
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Polymerized microgel colloidal crystals: photonic hydrogels with tunable band gaps and fast response rates.
    Chen M; Zhou L; Guan Y; Zhang Y
    Angew Chem Int Ed Engl; 2013 Sep; 52(38):9961-5. PubMed ID: 23929768
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photonic band engineering in absorbing media for spectrally selective optoelectronic films.
    Qiu B; Lin Y; Arinze ES; Chiu A; Li L; Thon SM
    Opt Express; 2018 Oct; 26(21):26933-26945. PubMed ID: 30469771
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Paintable band-edge liquid crystal lasers.
    Gardiner DJ; Morris SM; Hands PJ; Mowatt C; Rutledge R; Wilkinson TD; Coles HJ
    Opt Express; 2011 Jan; 19(3):2432-9. PubMed ID: 21369062
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultralow-threshold single-mode lasing based on a one-dimensional asymmetric photonic bandgap structure with liquid crystal as a defect layer.
    Wang HT; Lin JD; Lee CR; Lee W
    Opt Lett; 2014 Jun; 39(12):3516-9. PubMed ID: 24978525
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrically tunable polarization of random lasing from dye-doped nematic liquid crystals.
    Yao F; Hong R; Zhang B; Pei Y; Hou C; Sun X
    Opt Lett; 2020 Nov; 45(22):6118-6121. PubMed ID: 33186929
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Temperature-tunable lasing from dye-doped chiral microdroplets encapsulated in a thin polymeric film.
    Petriashvili G; Bruno MDL; De Santo MP; Barberi R
    Beilstein J Nanotechnol; 2018; 9():379-383. PubMed ID: 29515951
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Research Progress on Blue-Phase Liquid Crystals for Pattern Replication Applications.
    Wang H; Zhou H; He W; Yang Z; Cao H; Wang D; Li Y
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614533
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Over 200 °C Broad-Temperature Lasers Reconstructed from a Blue-Phase Polymer Scaffold.
    Chen Y; Zheng C; Yang W; Li J; Jin F; Li X; Wang J; Jiang L
    Adv Mater; 2022 Nov; 34(47):e2206580. PubMed ID: 36189900
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tunable liquid-crystal microshell-laser based on whispering-gallery modes and photonic band-gap mode lasing.
    Lu Y; Yang Y; Wang Y; Wang L; Ma J; Zhang L; Sun W; Liu Y
    Opt Express; 2018 Feb; 26(3):3277-3285. PubMed ID: 29401858
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal.
    Aluicio-Sarduy E; Callegari S; Figueroa Del Valle DG; Desii A; Kriegel I; Scotognella F
    Beilstein J Nanotechnol; 2016; 7():1404-1410. PubMed ID: 27826514
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrically tunable Yb-doped fiber laser based on a liquid crystal photonic bandgap fiber device.
    Olausson CB; Scolari L; Wei L; Noordegraaf D; Weirich J; Alkeskjold TT; Hansen KP; Bjarklev A
    Opt Express; 2010 Apr; 18(8):8229-38. PubMed ID: 20588669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.