These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 31132248)

  • 1. Facile Counting of Ligands Capped on Nanoparticles via a Titration Chip of Moving Reaction Boundary Electrophoresis.
    Zhang Q; Liu W; Khan MI; Wang C; Li G; Xiao H; Wang Y; Cao C
    Anal Chem; 2019 Jun; 91(12):7500-7504. PubMed ID: 31132248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model, Simulation, and Experiments on Moving Exchange Boundary via Ligand and Quantum Dots in Chip Electrophoresis.
    Zhang Q; Guo Z; Luo F; Xiao H; Liu W; Fan L; Cao C
    Anal Chem; 2021 Apr; 93(13):5360-5364. PubMed ID: 33754711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A facile thermometer-like electrophoresis titration biosensor for alternative miRNA assay via moving reaction boundary chip.
    Chen L; Zhang Q; Liu W; Xiao H; Liu X; Fan L; Wang Y; Li H; Cao C
    Biosens Bioelectron; 2021 Jan; 171():112676. PubMed ID: 33049564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme catalysis-electrophoresis titration for multiplex enzymatic assay via moving reaction boundary chip.
    Zhong R; Xie H; Kong F; Zhang Q; Jahan S; Xiao H; Fan L; Cao C
    Lab Chip; 2016 Sep; 16(18):3538-47. PubMed ID: 27464600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double inner standard plot model of an electrophoresis titration chip for a portable and green assay of protein content in milk.
    Wang C; Zhang Q; Liu X; Li G; Kong H; Khan MI; Xiao H; Wang Y; Liu W; Cao C
    Lab Chip; 2019 Jan; 19(3):484-492. PubMed ID: 30601538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile, Rapid, and Low-Cost Electrophoresis Titration of Thrombin by Aptamer-Linked Magnetic Nanoparticles and a Redox Boundary Chip.
    Kong H; Liu WW; Zhang W; Zhang Q; Wang CH; Khan MI; Wang YX; Fan LY; Cao CX
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29549-29556. PubMed ID: 31259516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iPhone-imaged and cell-powered electrophoresis titration chip for the alkaline phosphatase assay in serum by the moving reaction boundary.
    Cao XY; Kong FZ; Zhang Q; Liu WW; Liu XP; Li GQ; Zhong R; Fan LY; Xiao H; Cao CX
    Lab Chip; 2018 Jun; 18(12):1758-1766. PubMed ID: 29780999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophoresis Titration Model of a Moving Redox Boundary Chip for a Point-of-Care Test of an Enzyme-Linked Immunosorbent Assay.
    Kong FZ; Jahan S; Zhong R; Cao XY; Li WL; Wang YX; Xiao H; Liu WW; Cao CX
    ACS Sens; 2019 Jan; 4(1):126-133. PubMed ID: 30604605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leverage principle of retardation signal in titration of double protein via chip moving reaction boundary electrophoresis.
    Zhang LX; Cao YR; Xiao H; Liu XP; Liu SR; Meng QH; Fan LY; Cao CX
    Biosens Bioelectron; 2016 Mar; 77():284-91. PubMed ID: 26414025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand exchange on the surface of cadmium telluride quantum dots with fluorosurfactant-capped gold nanoparticles: synthesis, characterization and toxicity evaluation.
    Wang L; Zhang H; Lu C; Zhao L
    J Colloid Interface Sci; 2014 Jan; 413():140-6. PubMed ID: 24183442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retardation signal for fluorescent determination of total protein content via rapid and sensitive chip moving reaction boundary electrophoretic titration.
    Wang H; Shi Y; Yan J; Dong J; Li S; Xiao H; Xie H; Fan LY; Cao CX
    Anal Chem; 2014 Mar; 86(6):2888-94. PubMed ID: 24512429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stability and removal of water-dispersed CdSe/CdS core-shell quantum dots from water.
    Chen X; Ok YS; Mohan D; Pittman CU; Dou X
    Chemosphere; 2017 Oct; 185():926-933. PubMed ID: 28747004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of free acidic and alkaline residues of protein via moving reaction boundary titration in microdevice electrophoresis.
    Wang HY; Li S; Tang YY; Dong JY; Fan LY; Cao CX
    Analyst; 2013 Jun; 138(12):3544-51. PubMed ID: 23671907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic-to-Aqueous Phase Transfer of Cadmium Chalcogenide Quantum Dots using a Sulfur-Free Ligand for Enhanced Photoluminescence and Oxidative Stability.
    Calzada R; Thompson CM; Westmoreland DE; Edme K; Weiss EA
    Chem Mater; 2016 Sep; 28(18):6716-6723. PubMed ID: 28260836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photodegradation of Mercaptopropionic Acid- and Thioglycollic Acid-Capped CdTe Quantum Dots in Buffer Solutions.
    Miao Y; Yang P; Zhao J; Du Y; He H; Liu Y
    J Nanosci Nanotechnol; 2015 Jun; 15(6):4462-9. PubMed ID: 26369066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equivalence-point electromigration acid-base titration via moving neutralization boundary electrophoresis.
    Yang Q; Fan LY; Huang SS; Zhang W; Cao CX
    Electrophoresis; 2011 Apr; 32(9):1015-24. PubMed ID: 21462222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-controlled growth of ZnSe quantum dots in water during Ostwald ripening.
    Jiang F; Muscat AJ
    Langmuir; 2012 Sep; 28(36):12931-40. PubMed ID: 22881121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasensitive detection of EGFR gene based on surface plasmon resonance enhanced electrochemiluminescence of CuZnInS quantum dots.
    Chen X; Gui W; Ma Q
    Anal Chim Acta; 2018 Jun; 1009():73-80. PubMed ID: 29422134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aqueous synthesis of L-cysteine and mercaptopropionic acid co-capped ZnS quantum dots with dual emissions.
    Ren Y; Wang Y; Yang M; Liu E; Hu X; Zhang X; Fan J
    Nanotechnology; 2018 Jul; 29(30):305707. PubMed ID: 29708102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft-binding ligand-capped fluorescent CdSe/ZnS quantum dots for the facile labeling of polysaccharide-based self-assemblies.
    Cao M; Yu L; Zhang P; Xiong H; Jin Y; Lu Y; Wang LQ
    Colloids Surf B Biointerfaces; 2013 Sep; 109():154-60. PubMed ID: 23643911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.