BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31132321)

  • 1. Improved Efficiency of the Desulfurization of Oil Sulfur Compounds in Escherichia coli Using a Combination of Desensitization Engineering and DszC Overexpression.
    Li L; Liao Y; Luo Y; Zhang G; Liao X; Zhang W; Zheng S; Han S; Lin Y; Liang S
    ACS Synth Biol; 2019 Jun; 8(6):1441-1451. PubMed ID: 31132321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the substrate tolerance of DszC by a combination of alanine scanning and site-directed saturation mutagenesis.
    Li L; Ye L; Lin Y; Zhang W; Liao X; Liang S
    J Ind Microbiol Biotechnol; 2020 May; 47(4-5):395-402. PubMed ID: 32303871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A kinetic model to optimize and direct the dose ratio of Dsz enzymes in the 4S desulfurization pathway in vitro and in vivo.
    Li L; Ye L; Guo Z; Zhang W; Liao X; Lin Y; Liang S
    Biotechnol Lett; 2019 Nov; 41(11):1333-1341. PubMed ID: 31522352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfur Removal from Dibenzothiophene by Newly Isolated Paenibacillus validus Strain PD2 and Process Optimization in Aqueous and Biphasic (Model-Oil) Systems.
    Derikvand P; Etemadifar Z; Saber H
    Pol J Microbiol; 2015; 64(1):47-54. PubMed ID: 26094315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Co-expression of Rhodococcus sp. DS-3 dszABC and dszD gene with incompatible plasmids in Escherichia coli].
    Li GQ; Ma T; Li JH; Li H; Liu RL
    Wei Sheng Wu Xue Bao; 2006 Apr; 46(2):275-9. PubMed ID: 16736591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodesulfurization of Thiophenic Compounds by a 2-Hydroxybiphenyl-Resistant Gordonia sp. HS126-4N Carrying dszABC Genes.
    Akhtar N; Akhtar K; Ghauri MA
    Curr Microbiol; 2018 May; 75(5):597-603. PubMed ID: 29264784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved conversion of Dibenzothiophene into sulfone by surface display of Dibenzothiophene monooxygenase (DszC) in recombinant Escherichia coli.
    Rangra S; Kabra M; Gupta V; Srivastava P
    J Biotechnol; 2018 Dec; 287():59-67. PubMed ID: 30321571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of hydrophobic Rhodococcus opacus for biodesulfurization in oil-water biphasic reaction mixtures.
    Kawaguchi H; Kobayashi H; Sato K
    J Biosci Bioeng; 2012 Mar; 113(3):360-6. PubMed ID: 22099375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of apo-DszC and FMN-bound DszC from Rhodococcus erythropolis D-1.
    Guan LJ; Lee WC; Wang S; Ohshiro T; Izumi Y; Ohtsuka J; Tanokura M
    FEBS J; 2015 Aug; 282(16):3126-35. PubMed ID: 25627402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing Desulfurization in the Model Biocatalyst
    Martzoukou O; Amillis S; Glekas PD; Breyanni D; Avgeris M; Scorilas A; Kekos D; Pachnos M; Mavridis G; Mamma D; Hatzinikolaou DG
    Appl Environ Microbiol; 2023 Feb; 89(2):e0197022. PubMed ID: 36688659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8.
    Piddington CS; Kovacevich BR; Rambosek J
    Appl Environ Microbiol; 1995 Feb; 61(2):468-75. PubMed ID: 7574582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes.
    Duarte GF; Rosado AS; Seldin L; de Araujo W; van Elsas JD
    Appl Environ Microbiol; 2001 Mar; 67(3):1052-62. PubMed ID: 11229891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomics and Metabolomics Analyses to Elucidate the Desulfurization Pathway of Chelatococcus sp.
    Bordoloi NK; Bhagowati P; Chaudhuri MK; Mukherjee AK
    PLoS One; 2016; 11(4):e0153547. PubMed ID: 27100386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel Bacillus pumilus-related strain from tropical landfarm soil is capable of rapid dibenzothiophene degradation and biodesulfurization.
    Buzanello EB; Rezende RP; Sousa FM; Marques Ede L; Loguercio LL
    BMC Microbiol; 2014 Oct; 14():257. PubMed ID: 25293673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic and process engineering for biodesulfurization in Gram-negative bacteria.
    Martínez I; El-Said Mohamed M; Santos VE; García JL; García-Ochoa F; Díaz E
    J Biotechnol; 2017 Nov; 262():47-55. PubMed ID: 28947364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the mechanism of biocatalyst inhibition in microbial desulfurization.
    Abin-Fuentes A; Mohamed Mel-S; Wang DI; Prather KL
    Appl Environ Microbiol; 2013 Dec; 79(24):7807-17. PubMed ID: 24096431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1.
    Matsubara T; Ohshiro T; Nishina Y; Izumi Y
    Appl Environ Microbiol; 2001 Mar; 67(3):1179-84. PubMed ID: 11229908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fructophilic behaviour of Gordonia alkanivorans strain 1B during dibenzothiophene desulfurization process.
    Alves L; Paixão SM
    N Biotechnol; 2014 Jan; 31(1):73-9. PubMed ID: 24012483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria.
    Mohamed Mel-S; Al-Yacoub ZH; Vedakumar JV
    Front Microbiol; 2015; 6():112. PubMed ID: 25762990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidation of 2-hydroxybiphenyl effect on dibenzothiophene desulfurization by Microbacterium sp. strain ZD-M2.
    Chen H; Zhang WJ; Cai YB; Zhang Y; Li W
    Bioresour Technol; 2008 Oct; 99(15):6928-33. PubMed ID: 18296046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.