BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31132366)

  • 1. Mammalian sphingoid bases: Biophysical, physiological and pathological properties.
    Carreira AC; Santos TC; Lone MA; Zupančič E; Lloyd-Evans E; de Almeida RFM; Hornemann T; Silva LC
    Prog Lipid Res; 2019 Jul; 75():100988. PubMed ID: 31132366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mammalian sphingoid bases: Biophysical, physiological and pathological properties.
    Carreira AC; Santos TC; Lone MA; Zupančič E; Lloyd-Evans E; de Almeida RFM; Hornemann T; Silva LC
    Prog Lipid Res; 2019 Aug; ():100995. PubMed ID: 31445071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sphingoid bases and their involvement in neurodegenerative diseases.
    Goins L; Spassieva S
    Adv Biol Regul; 2018 Dec; 70():65-73. PubMed ID: 30377075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tackling the biophysical properties of sphingolipids to decipher their biological roles.
    Carreira AC; Ventura AE; Varela AR; Silva LC
    Biol Chem; 2015 Jun; 396(6-7):597-609. PubMed ID: 25581755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodiversity of sphingoid bases ("sphingosines") and related amino alcohols.
    Pruett ST; Bushnev A; Hagedorn K; Adiga M; Haynes CA; Sullards MC; Liotta DC; Merrill AH
    J Lipid Res; 2008 Aug; 49(8):1621-39. PubMed ID: 18499644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sphingoid bases and de novo ceramide synthesis: enzymes involved, pharmacology and mechanisms of action.
    Menaldino DS; Bushnev A; Sun A; Liotta DC; Symolon H; Desai K; Dillehay DL; Peng Q; Wang E; Allegood J; Trotman-Pruett S; Sullards MC; Merrill AH
    Pharmacol Res; 2003 May; 47(5):373-81. PubMed ID: 12676511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sphingolipid perturbations as mechanisms for fumonisin carcinogenesis.
    Riley RT; Enongene E; Voss KA; Norred WP; Meredith FI; Sharma RP; Spitsbergen J; Williams DE; Carlson DB; Merrill AH
    Environ Health Perspect; 2001 May; 109 Suppl 2(Suppl 2):301-8. PubMed ID: 11359699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of free endogenous C14 and C16 sphingoid bases from Drosophila melanogaster.
    Fyrst H; Herr DR; Harris GL; Saba JD
    J Lipid Res; 2004 Jan; 45(1):54-62. PubMed ID: 13130120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The SPTLC3 subunit of serine palmitoyltransferase generates short chain sphingoid bases.
    Hornemann T; Penno A; Rütti MF; Ernst D; Kivrak-Pfiffner F; Rohrer L; von Eckardstein A
    J Biol Chem; 2009 Sep; 284(39):26322-30. PubMed ID: 19648650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids.
    Goñi FM; Alonso A
    Biochim Biophys Acta; 2006 Dec; 1758(12):1902-21. PubMed ID: 17070498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sphingoid base 1-phosphate phosphatase: a key regulator of sphingolipid metabolism and stress response.
    Mandala SM; Thornton R; Tu Z; Kurtz MB; Nickels J; Broach J; Menzeleev R; Spiegel S
    Proc Natl Acad Sci U S A; 1998 Jan; 95(1):150-5. PubMed ID: 9419344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymes of sphingosine metabolism as potential pharmacological targets for therapeutic intervention in cancer.
    Cuvillier O; Levade T
    Pharmacol Res; 2003 May; 47(5):439-45. PubMed ID: 12676517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and biological evaluation of a polyyne-containing sphingoid base probe as a chemical tool.
    Lee YM; Lim C; Lee HS; Shin YK; Shin KO; Lee YM; Kim S
    Bioconjug Chem; 2013 Aug; 24(8):1324-31. PubMed ID: 23926922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the 'sphingoid motif' in shaping the molecular interactions of sphingolipids in biomembranes.
    Dingjan T; Futerman AH
    Biochim Biophys Acta Biomembr; 2021 Nov; 1863(11):183701. PubMed ID: 34302797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins.
    Merrill AH; Sullards MC; Wang E; Voss KA; Riley RT
    Environ Health Perspect; 2001 May; 109 Suppl 2(Suppl 2):283-9. PubMed ID: 11359697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis.
    Quinville BM; Deschenes NM; Ryckman AE; Walia JS
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34071409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereoselective Synthesis of Novel Sphingoid Bases Utilized for Exploring the Secrets of Sphinx.
    Saied EM; Arenz C
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of endogenous free sphingoid bases in cells induced by changing medium conditions.
    Lavie Y; Blusztajn JK; Liscovitch M
    Biochim Biophys Acta; 1994 Feb; 1220(3):323-8. PubMed ID: 8305506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient preparation of sphingoid bases from glucosylceramides by chemoenzymatic method.
    Gowda SG; Usuki S; Hammam MA; Murai Y; Igarashi Y; Monde K
    J Lipid Res; 2016 Feb; 57(2):325-31. PubMed ID: 26667669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of sphingomyelin, glucosylceramide, ceramide, sphingosine, and sphingosine 1-phosphate by tandem mass spectrometry.
    Sullards MC
    Methods Enzymol; 2000; 312():32-45. PubMed ID: 11070861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.