These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 31132401)

  • 61. Identification of 3-substituted-6-(1-(1H-[1,2,3]triazolo[4,5-b]pyrazin-1-yl)ethyl)quinoline derivatives as highly potent and selective mesenchymal-epithelial transition factor (c-Met) inhibitors via metabolite profiling-based structural optimization.
    Zhao F; Zhang LD; Hao Y; Chen N; Bai R; Wang YJ; Zhang CC; Li GS; Hao LJ; Shi C; Zhang J; Mao Y; Fan Y; Xia GX; Yu JX; Liu YJ
    Eur J Med Chem; 2017 Jul; 134():147-158. PubMed ID: 28411455
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Retrospective Assessment of Translational Pharmacokinetic-Pharmacodynamic Modeling Performance: A Case Study with Apitolisib, a Dual PI3K/mTOR Inhibitor.
    Moein A; Jin JY; Wright MR; Alicke B; Wong H
    Drugs R D; 2024 Jun; 24(2):155-167. PubMed ID: 38700808
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Preclinical pharmacokinetics and metabolism of 6-(4-(2,5-difluorophenyl)oxazol-5-yl)-3-isopropyl-[1,2,4]-triazolo[4,3-a]pyridine, a novel and selective p38alpha inhibitor: identification of an active metabolite in preclinical species and human liver microsomes.
    Kalgutkar AS; Hatch HL; Kosea F; Nguyen HT; Choo EF; McClure KF; Taylor TJ; Henne KR; Kuperman AV; Dombroski MA; Letavic MA
    Biopharm Drug Dispos; 2006 Nov; 27(8):371-86. PubMed ID: 16944451
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Preclinical Drug Metabolism, Pharmacokinetic, and Pharmacodynamic Profiles of Ivosidenib, an Inhibitor of Mutant Isocitrate Dehydrogenase 1 for Treatment of Isocitrate Dehydrogenase 1-Mutant Malignancies.
    Chen Y; Nagaraja NV; Fan B; Utley L; Lemieux RM; Popovici-Muller J; Dang L; Kim H; Yan L; Su SM; Biller SA; Yang H
    Drug Metab Dispos; 2021 Oct; 49(10):870-881. PubMed ID: 34321251
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Biomarker-Based Phase II Trial of Savolitinib in Patients With Advanced Papillary Renal Cell Cancer.
    Choueiri TK; Plimack E; Arkenau HT; Jonasch E; Heng DYC; Powles T; Frigault MM; Clark EA; Handzel AA; Gardner H; Morgan S; Albiges L; Pal SK
    J Clin Oncol; 2017 Sep; 35(26):2993-3001. PubMed ID: 28644771
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A Phase 1 Study to Evaluate Absolute Bioavailability and Absorption, Distribution, Metabolism, and Excretion of Savolitinib in Healthy Male Volunteers.
    Miah K; Vishwanathan K; Scarfe G; Li Y; Hara I; Cantarini M; Argue J; Menakuru SR
    Clin Pharmacol Drug Dev; 2023 Apr; 12(4):424-435. PubMed ID: 36808891
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Pharmacokinetic-Pharmacodynamic Modeling of the Anti-Tumor Effect of Sunitinib Combined with Dopamine in the Human Non-Small Cell Lung Cancer Xenograft.
    Hao F; Wang S; Zhu X; Xue J; Li J; Wang L; Li J; Lu W; Zhou T
    Pharm Res; 2017 Feb; 34(2):408-418. PubMed ID: 27975187
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Preclinical disposition of GDC-0973 and prospective and retrospective analysis of human dose and efficacy predictions.
    Choo EF; Belvin M; Boggs J; Deng Y; Hoeflich KP; Ly J; Merchant M; Orr C; Plise E; Robarge K; Martini JF; Kassees R; Aoyama RG; Ramaiya A; Johnston SH
    Drug Metab Dispos; 2012 May; 40(5):919-27. PubMed ID: 22315332
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human.
    Shah DK; Betts AM
    J Pharmacokinet Pharmacodyn; 2012 Feb; 39(1):67-86. PubMed ID: 22143261
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Establishing in vitro-in vivo correlation for antibody drug conjugate efficacy: a PK/PD modeling approach.
    Shah DK; Loganzo F; Haddish-Berhane N; Musto S; Wald HS; Barletta F; Lucas J; Clark T; Hansel S; Betts A
    J Pharmacokinet Pharmacodyn; 2018 Apr; 45(2):339-349. PubMed ID: 29423862
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Pharmacokinetic-pharmacodynamic modeling of the anticancer effect of erlotinib in a human non-small cell lung cancer xenograft mouse model.
    Wu Q; Li MY; Li HQ; Deng CH; Li L; Zhou TY; Lu W
    Acta Pharmacol Sin; 2013 Nov; 34(11):1427-36. PubMed ID: 24096601
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Discovery of a novel pan-RAF inhibitor with potent anti-tumor activity in preclinical models of BRAF
    Hong SP; Ahn SK
    Life Sci; 2017 Aug; 183():37-44. PubMed ID: 28645859
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Pharmacokinetic-pharmacodynamic modeling of the antitumor effect of TM208 and EGFR-TKI resistance in human breast cancer xenograft mice.
    Ji XW; Ji SM; Li RT; Wu KH; Zhu X; Lu W; Zhou TY
    Acta Pharmacol Sin; 2016 Jun; 37(6):825-33. PubMed ID: 27133303
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Translation of the efficacy of antibody-drug conjugates from preclinical to clinical using a semimechanistic PK/PD model: A case study with RC88.
    Li Q; Wang L; Zhang J; Zhao G; Liu Z; Ma X; Jiang J
    Clin Transl Sci; 2023 Jul; 16(7):1232-1242. PubMed ID: 37259689
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Physiologically-based pharmacokinetic/pharmacodynamic modeling to predict tumor growth inhibition and the efficacious dose of selective estrogen receptor degraders in humans.
    Ganti A; Yu S; Sharpnack D; Ingalla E; De Bruyn T
    Biopharm Drug Dispos; 2023 Aug; 44(4):301-314. PubMed ID: 37102506
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Establishment of patient-derived non-small cell lung cancer xenograft models with genetic aberrations within EGFR, KRAS and FGFR1: useful tools for preclinical studies of targeted therapies.
    Zhang XC; Zhang J; Li M; Huang XS; Yang XN; Zhong WZ; Xie L; Zhang L; Zhou M; Gavine P; Su X; Zheng L; Zhu G; Zhan P; Ji Q; Wu YL
    J Transl Med; 2013 Jul; 11():168. PubMed ID: 23842453
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Preclinical pharmacology, antitumor activity, and development of pharmacodynamic markers for the novel, potent AKT inhibitor CCT128930.
    Yap TA; Walton MI; Hunter LJ; Valenti M; de Haven Brandon A; Eve PD; Ruddle R; Heaton SP; Henley A; Pickard L; Vijayaraghavan G; Caldwell JJ; Thompson NT; Aherne W; Raynaud FI; Eccles SA; Workman P; Collins I; Garrett MD
    Mol Cancer Ther; 2011 Feb; 10(2):360-71. PubMed ID: 21191045
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A Selective and Orally Bioavailable Quinoline-6-Carbonitrile-Based Inhibitor of CDK8/19 Mediator Kinase with Tumor-Enriched Pharmacokinetics.
    Zhang L; Cheng C; Li J; Wang L; Chumanevich AA; Porter DC; Mindich A; Gorbunova S; Roninson IB; Chen M; McInnes C
    J Med Chem; 2022 Feb; 65(4):3420-3433. PubMed ID: 35114084
    [TBL] [Abstract][Full Text] [Related]  

  • 79. MicroRNA-206 prevents the pathogenesis of hepatocellular carcinoma by modulating expression of met proto-oncogene and cyclin-dependent kinase 6 in mice.
    Wu H; Tao J; Li X; Zhang T; Zhao L; Wang Y; Zhang L; Xiong J; Zeng Z; Zhan N; Steer CJ; Che L; Dong M; Wang X; Niu J; Li Z; Yan G; Chen X; Song G
    Hepatology; 2017 Dec; 66(6):1952-1967. PubMed ID: 28714063
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Preclinical to clinical translation of tofacitinib, a Janus kinase inhibitor, in rheumatoid arthritis.
    Dowty ME; Jesson MI; Ghosh S; Lee J; Meyer DM; Krishnaswami S; Kishore N
    J Pharmacol Exp Ther; 2014 Jan; 348(1):165-73. PubMed ID: 24218541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.