These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 31132529)
1. Optimization of the cell microenvironment in a dual magnetic-pH-sensitive hydrogel-based scaffold by multiphysics modeling. Liu Q; Li H; Lam KY Bioelectrochemistry; 2019 Oct; 129():90-99. PubMed ID: 31132529 [TBL] [Abstract][Full Text] [Related]
2. Optimization of Deformable Magnetic-Sensitive Hydrogel-Based Targeting System in Suspension Fluid for Site-Specific Drug Delivery. Liu Q; Li H; Lam KY Mol Pharm; 2018 Oct; 15(10):4632-4642. PubMed ID: 30133299 [TBL] [Abstract][Full Text] [Related]
3. A modeling study of the effect of environmental ionic valence on the mechanical characteristics of pH-electrosensitive hydrogel. Luo R; Li H Acta Biomater; 2009 Oct; 5(8):2920-8. PubMed ID: 19427422 [TBL] [Abstract][Full Text] [Related]
4. Modeling and characterization of glucose-sensitive hydrogel: effect of Young's modulus. Li H; Luo R Biosens Bioelectron; 2009 Aug; 24(12):3630-6. PubMed ID: 19523807 [TBL] [Abstract][Full Text] [Related]
5. Multiphysics modeling of responsive characteristics of ionic-strength-sensitive hydrogel. Li H; Lai F Biomed Microdevices; 2010 Jun; 12(3):419-34. PubMed ID: 20195766 [TBL] [Abstract][Full Text] [Related]
6. Multiphysics modeling of electrochemomechanically smart microgels responsive to coupled pH/electric stimuli. Li H; Luo R; Lam KY Macromol Biosci; 2009 Mar; 9(3):287-97. PubMed ID: 19009512 [TBL] [Abstract][Full Text] [Related]
7. Effects of initial-fixed charge density on pH-sensitive hydrogels subjected to coupled pH and electric field stimuli: a meshless analysis. Ng TY; Li H; Yew YK; Lam KY J Biomech Eng; 2007 Apr; 129(2):148-55. PubMed ID: 17408319 [TBL] [Abstract][Full Text] [Related]
8. A multiphysics model of photo-sensitive hydrogels in response to light-thermo-pH-salt coupled stimuli for biomedical applications. Chen X; Li H; Lam KY Bioelectrochemistry; 2020 Oct; 135():107584. PubMed ID: 32574995 [TBL] [Abstract][Full Text] [Related]
9. Modeling and simulation of chemo-electro-mechanical behavior of pH-electric-sensitive hydrogel. Luo R; Li H; Lam KY Anal Bioanal Chem; 2007 Oct; 389(3):863-73. PubMed ID: 17643229 [TBL] [Abstract][Full Text] [Related]
10. Modeling of a fast-response magnetic-sensitive hydrogel for dynamic control of microfluidic flow. Liu Q; Li H; Lam KY Phys Chem Chem Phys; 2019 Jan; 21(4):1852-1862. PubMed ID: 30629060 [TBL] [Abstract][Full Text] [Related]
11. Development of a Multiphysics Model to Characterize the Responsive Behavior of Magnetic-Sensitive Hydrogels with Finite Deformation. Liu Q; Li H; Lam KY J Phys Chem B; 2017 Jun; 121(22):5633-5646. PubMed ID: 28498663 [TBL] [Abstract][Full Text] [Related]
12. Modeling the effect of environmental solution pH on the mechanical characteristics of glucose-sensitive hydrogels. Luo R; Li H; Lam KY Biomaterials; 2009 Feb; 30(4):690-700. PubMed ID: 18992938 [TBL] [Abstract][Full Text] [Related]
13. Magnetically actuated tissue engineered scaffold: insights into mechanism of physical stimulation. Sapir-Lekhovitser Y; Rotenberg MY; Jopp J; Friedman G; Polyak B; Cohen S Nanoscale; 2016 Feb; 8(6):3386-99. PubMed ID: 26790538 [TBL] [Abstract][Full Text] [Related]
14. Modeling and analysis of pH-electric-stimuli-responsive hydrogels. Luo R; Li H; Lam KY J Biomater Sci Polym Ed; 2008; 19(12):1597-610. PubMed ID: 19017473 [TBL] [Abstract][Full Text] [Related]
15. A coupled diffusion-fluid pressure model to predict cell density distribution for cells encapsulated in a porous hydrogel scaffold under mechanical loading. Zhao F; Vaughan TJ; Mc Garrigle MJ; McNamara LM Comput Biol Med; 2017 Oct; 89():181-189. PubMed ID: 28822899 [TBL] [Abstract][Full Text] [Related]
16. Multilayered hydrogel scaffold construct with native tissue matched elastic modulus: A regenerative microenvironment for urethral scar-free healing. Jin Y; Wang Y; Yang R; Fang W; Zhang K; Liu M; Wang Y; Yang M; Fu Q Biomaterials; 2025 Jan; 312():122711. PubMed ID: 39088911 [TBL] [Abstract][Full Text] [Related]
17. Modeling and simulation of the swelling behavior of pH-stimulus-responsive hydrogels. Li H; Ng TY; Yew YK; Lam KY Biomacromolecules; 2005; 6(1):109-20. PubMed ID: 15638511 [TBL] [Abstract][Full Text] [Related]
18. A tough, precision-porous hydrogel scaffold: ophthalmologic applications. Teng W; Long TJ; Zhang Q; Yao K; Shen TT; Ratner BD Biomaterials; 2014 Oct; 35(32):8916-26. PubMed ID: 25085856 [TBL] [Abstract][Full Text] [Related]
19. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192 [TBL] [Abstract][Full Text] [Related]
20. Transient swelling response of pH-sensitive hydrogels: A monophasic constitutive model and numerical implementation. Bayat MR; Dolatabadi R; Baghani M Int J Pharm; 2020 Mar; 577():119030. PubMed ID: 31953086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]