These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31132563)

  • 1. Numerical and experimental investigation of pulse bubble aeration with high packing density hollow-fibre MBRs.
    Radaei E; Liu X; Tng KH; Merendino G; Trujillo FJ; Bérubé PR; Leslie G
    Water Res; 2019 Sep; 160():60-69. PubMed ID: 31132563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of bubble induced shear in membrane bioreactors: effects of mixed liquor rheology and membrane configuration.
    Liu X; Wang Y; Waite TD; Leslie G
    Water Res; 2015 May; 75():131-45. PubMed ID: 25768986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CFD simulation of the aeration process and baffle influence in a full-scale commercial flat sheet module.
    Cao Y; Gu B; Sonnenburg A; Urban W
    Water Sci Technol; 2020 May; 81(9):2004-2010. PubMed ID: 32666953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of bubble flow velocity on drag-force and shear stress working on submerged hollow fibre membrane.
    Nagaoka H; Kurosaka M; Shibata N; Kobayashi M
    Water Sci Technol; 2006; 54(10):185-92. PubMed ID: 17165462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical optimization of membrane module design and operation for a full-scale submerged MBR by computational fluid dynamics.
    Liu M; Yang M; Chen M; Yu D; Zheng J; Chang J; Wang X; Ji C; Wei Y
    Bioresour Technol; 2018 Dec; 269():300-308. PubMed ID: 30195222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superior performance of a membrane bioreactor through innovative in-situ aeration and structural optimization using computational fluid dynamics.
    Shen L; Wu Q; Ye Q; Lin H; Zhang J; Chen C; Yue R; Teng J; Hong H; Liao BQ
    Water Res; 2023 Sep; 243():120353. PubMed ID: 37482001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.
    Xia L; Law AW; Fane AG
    Water Res; 2013 Jul; 47(11):3762-72. PubMed ID: 23726713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of scaling-up for AEC-MBRs regarding membrane module configurations and cyclic aeration modes.
    Yang M; Liu M; Yu D; Zheng J; Wu Z; Zhao S; Chang J; Wei Y
    Bioresour Technol; 2017 Dec; 245(Pt A):933-943. PubMed ID: 28938512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fouling and its reversibility in relation to flow properties and module design in aerated hollow fibre modules for membrane bioreactors.
    Pollet S; Guigui C; Cabassud C
    Water Sci Technol; 2008; 57(4):629-36. PubMed ID: 18360006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power induced by bubbles of different sizes and frequencies on to hollow fibers in submerged membrane systems.
    Jankhah S; Bérubé PR
    Water Res; 2013 Nov; 47(17):6516-26. PubMed ID: 24074817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of MBR hydrodynamics for cake layer fouling control through CFD simulation and RSM design.
    Yang M; Yu D; Liu M; Zheng L; Zheng X; Wei Y; Wang F; Fan Y
    Bioresour Technol; 2017 Mar; 227():102-111. PubMed ID: 28013126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing slug bubble size for application of the ultra-thin flat sheet membranes in MBR: a comprehensive study combining CFD simulation and experiment.
    Wu X; Yang L; Chang J; Dong S; Xiao F
    Environ Sci Pollut Res Int; 2024 Feb; 31(10):15322-15338. PubMed ID: 38294654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors.
    Tirunehe G; Norddahl B
    Bioprocess Biosyst Eng; 2016 Apr; 39(4):613-26. PubMed ID: 26857370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydraulic optimization of membrane bioreactor via baffle modification using computational fluid dynamics.
    Yan X; Xiao K; Liang S; Lei T; Liang P; Xue T; Yu K; Guan J; Huang X
    Bioresour Technol; 2015 Jan; 175():633-7. PubMed ID: 25465790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of four types of membrane bioreactor systems in terms of shear stress over the membrane surface using computational fluid dynamics.
    Ratkovich N; Bentzen TR
    Water Sci Technol; 2013; 68(12):2534-44. PubMed ID: 24355838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical and numerical modelling of Newtonian and non-Newtonian liquid in a rotational cross-flow MBR.
    Bentzen TR; Ratkovich N; Madsen S; Jensen JC; Bak SN; Rasmussen MR
    Water Sci Technol; 2012; 66(11):2318-27. PubMed ID: 23032760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane sparger in bubble column, airlift, and combined membrane-ring sparger bioreactors.
    Poulsen BR; Iversen JJ
    Biotechnol Bioeng; 1999 Aug; 64(4):452-8. PubMed ID: 10397884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane bioreactor aeration: investigation of the velocity flow pattern.
    Tacke D; Pinnekamp J; Prieske H; Kraume M
    Water Sci Technol; 2008; 57(4):559-65. PubMed ID: 18359996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of bubble–liquid two-phase turbulent hydrodynamics on cell damage in sparged bioreactor.
    Liu Y; Li F; Hu W; Wiltberger K; Ryll T
    Biotechnol Prog; 2014; 30(1):48-58. PubMed ID: 23925890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical and experimental investigation for cleaning process of submerged outside-in hollow fiber membrane.
    Guo X; Wang Y; Zhang H; Li P; Ma C
    Water Sci Technol; 2017 Sep; 76(5-6):1283-1299. PubMed ID: 28953455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.