These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31132807)

  • 1. Potential role of ALDH3A2 on the lipid and glucose metabolism regulated by (-)-hydroxycitric acid in chicken embryos.
    Li S; Yang Z; Zhang H; Peng M; Ma H
    Anim Sci J; 2019 Aug; 90(8):961-976. PubMed ID: 31132807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. (-)-Hydroxycitric Acid Influenced Fat Metabolism via Modulating of Glucose-6-phosphate Isomerase Expression in Chicken Embryos.
    Li S; Yang Z; Zhang H; Peng M; Ma H
    J Agric Food Chem; 2019 Jul; 67(26):7336-7347. PubMed ID: 31184119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (-)-Hydroxycitric acid regulates energy metabolism by activation of AMPK - PGC1α - NRF1 signal pathway in primary chicken hepatocytes.
    Li L; Jiang Z; Yao Y; Yang Z; Ma H
    Life Sci; 2020 Aug; 254():117785. PubMed ID: 32416167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of (-)-hydroxycitric acid on lipid droplet accumulation in chicken embryos.
    Peng M; Li L; Yu L; Ge C; Ma H
    Anim Sci J; 2018 Jan; 89(1):237-249. PubMed ID: 28804986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. (-)-Hydroxycitric acid reduced fat deposition via regulating lipid metabolism-related gene expression in broiler chickens.
    Han J; Li L; Wang D; Ma H
    Lipids Health Dis; 2016 Feb; 15():37. PubMed ID: 26912252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. (-)-Hydroxycitric Acid Reduced Lipid Droplets Accumulation Via Decreasing Acetyl-Coa Supply and Accelerating Energy Metabolism in Cultured Primary Chicken Hepatocytes.
    Li L; Peng M; Ge C; Yu L; Ma H
    Cell Physiol Biochem; 2017; 43(2):812-831. PubMed ID: 28954258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (-)-Hydroxycitric Acid Suppresses Lipid Droplet Accumulation and Accelerates Energy Metabolism via Activation of the Adiponectin-AMPK Signaling Pathway in Broiler Chickens.
    Li L; Zhang H; Yao Y; Yang Z; Ma H
    J Agric Food Chem; 2019 Mar; 67(11):3188-3197. PubMed ID: 30827101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genistein activated adenosine 5'-monophosphate-activated protein kinase-sirtuin1/peroxisome proliferator-activated receptor γ coactivator-1α pathway potentially through adiponectin and estrogen receptor β signaling to suppress fat deposition in broiler chickens.
    Jiang Z; Yang Z; Zhang H; Yao Y; Ma H
    Poult Sci; 2021 Jan; 100(1):246-255. PubMed ID: 33357687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hepatic lipid metabolic pathways modified by resveratrol in rats fed an obesogenic diet.
    Alberdi G; Rodríguez VM; Macarulla MT; Miranda J; Churruca I; Portillo MP
    Nutrition; 2013 Mar; 29(3):562-7. PubMed ID: 23274094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (-)-Hydroxycitric Acid Alleviates Oleic Acid-Induced Steatosis, Oxidative Stress, and Inflammation in Primary Chicken Hepatocytes by Regulating AMP-Activated Protein Kinase-Mediated Reactive Oxygen Species Levels.
    Li L; Chu X; Yao Y; Cao J; Li Q; Ma H
    J Agric Food Chem; 2020 Oct; 68(40):11229-11241. PubMed ID: 32940033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of energy metabolism by long-chain fatty acids.
    Nakamura MT; Yudell BE; Loor JJ
    Prog Lipid Res; 2014 Jan; 53():124-44. PubMed ID: 24362249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferulic acid improves lipid and glucose homeostasis in high-fat diet-induced obese mice.
    Naowaboot J; Piyabhan P; Munkong N; Parklak W; Pannangpetch P
    Clin Exp Pharmacol Physiol; 2016 Feb; 43(2):242-50. PubMed ID: 26541794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propofol ameliorates acute postoperative fatigue and promotes glucagon-regulated hepatic gluconeogenesis by activating CREB/PGC-1α and accelerating fatty acids beta-oxidation.
    Zhang WW; Xue R; Mi TY; Shen XM; Li JC; Li S; Zhang Y; Li Y; Wang LX; Yin XL; Wang HL; Zhang YZ
    Biochem Biophys Res Commun; 2022 Jan; 586():121-128. PubMed ID: 34839190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spironolactone improves glucose and lipid metabolism by ameliorating hepatic steatosis and inflammation and suppressing enhanced gluconeogenesis induced by high-fat and high-fructose diet.
    Wada T; Kenmochi H; Miyashita Y; Sasaki M; Ojima M; Sasahara M; Koya D; Tsuneki H; Sasaoka T
    Endocrinology; 2010 May; 151(5):2040-9. PubMed ID: 20211973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptations of hepatic lipid metabolism and mitochondria in dairy cows with mild fatty liver.
    Du X; Shen T; Wang H; Qin X; Xing D; Ye Q; Shi Z; Fang Z; Zhu Y; Yang Y; Peng Z; Zhao C; Lv B; Li X; Liu G; Li X
    J Dairy Sci; 2018 Oct; 101(10):9544-9558. PubMed ID: 30100495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The developmental regulation of peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression in the liver is partially dissociated from the control of gluconeogenesis and lipid catabolism.
    Yubero P; Hondares E; Carmona MC; Rossell M; Gonzalez FJ; Iglesias R; Giralt M; Villarroya F
    Endocrinology; 2004 Sep; 145(9):4268-77. PubMed ID: 15178647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An active part of Artemisia sacrorum Ledeb. suppresses gluconeogenesis through AMPK mediated GSK3β and CREB phosphorylation in human HepG2 cells.
    Yuan HD; Piao GC
    Biosci Biotechnol Biochem; 2011; 75(6):1079-84. PubMed ID: 21670525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of plasma free fatty acids upregulates peroxisome proliferator-activated receptor (PPAR) alpha and delta and PPAR coactivator 1alpha in human skeletal muscle, but not lipid regulatory genes.
    Watt MJ; Southgate RJ; Holmes AG; Febbraio MA
    J Mol Endocrinol; 2004 Oct; 33(2):533-44. PubMed ID: 15525607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxymatrine attenuates hepatic steatosis in non-alcoholic fatty liver disease rats fed with high fructose diet through inhibition of sterol regulatory element binding transcription factor 1 (Srebf1) and activation of peroxisome proliferator activated receptor alpha (Pparα).
    Shi LJ; Shi L; Song GY; Zhang HF; Hu ZJ; Wang C; Zhang DH
    Eur J Pharmacol; 2013 Aug; 714(1-3):89-95. PubMed ID: 23791610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monascin and ankaflavin act as natural AMPK activators with PPARα agonist activity to down-regulate nonalcoholic steatohepatitis in high-fat diet-fed C57BL/6 mice.
    Hsu WH; Chen TH; Lee BH; Hsu YW; Pan TM
    Food Chem Toxicol; 2014 Feb; 64():94-103. PubMed ID: 24275089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.