BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 31133029)

  • 1. Carbohydrate metabolic systems present on genomic islands are lost and gained in Vibrio parahaemolyticus.
    Regmi A; Boyd EF
    BMC Microbiol; 2019 May; 19(1):112. PubMed ID: 31133029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species.
    McDonald ND; Regmi A; Morreale DP; Borowski JD; Boyd EF
    BMC Genomics; 2019 Feb; 20(1):105. PubMed ID: 30717668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a novel zinc transporter ZnuA acquired by Vibrio parahaemolyticus through horizontal gene transfer.
    Liu M; Yan M; Liu L; Chen S
    Front Cell Infect Microbiol; 2013; 3():61. PubMed ID: 24133656
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Jerez SA; Plaza N; Bravo V; Urrutia IM; Blondel CJ
    Microb Genom; 2023 Apr; 9(4):. PubMed ID: 37018030
    [No Abstract]   [Full Text] [Related]  

  • 5. CRISPR-Cas and Contact-Dependent Secretion Systems Present on Excisable Pathogenicity Islands with Conserved Recombination Modules.
    Carpenter MR; Kalburge SS; Borowski JD; Peters MC; Colwell RR; Boyd EF
    J Bacteriol; 2017 May; 199(10):. PubMed ID: 28264992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative genomic analysis of clinical and environmental strains provides insight into the pathogenicity and evolution of Vibrio parahaemolyticus.
    Li L; Wong HC; Nong W; Cheung MK; Law PT; Kam KM; Kwan HS
    BMC Genomics; 2014 Dec; 15(1):1135. PubMed ID: 25518728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomic analysis using microarray demonstrates a strong correlation between the presence of the 80-kilobase pathogenicity island and pathogenicity in Kanagawa phenomenon-positive Vibrio parahaemolyticus strains.
    Izutsu K; Kurokawa K; Tashiro K; Kuhara S; Hayashi T; Honda T; Iida T
    Infect Immun; 2008 Mar; 76(3):1016-23. PubMed ID: 18195030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of β-Carbonic Anhydrase Genes in Bacterial Genomic Islands and Their Horizontal Transfer to Protists.
    Zolfaghari Emameh R; Barker HR; Hytönen VP; Parkkila S
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29802189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Class IV Adenylate Cyclase, CyaB, Is Required for Capsule Polysaccharide Production and Biofilm Formation in Vibrio parahaemolyticus.
    Regmi A; Tague JG; Boas Lichty KE; Boyd EF
    Appl Environ Microbiol; 2023 Jan; 89(1):e0187422. PubMed ID: 36602323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the evolution of sialic acid catabolism among bacteria.
    Almagro-Moreno S; Boyd EF
    BMC Evol Biol; 2009 May; 9():118. PubMed ID: 19470179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic diversity, virulence factors and farm-to-table spread pattern of Vibrio parahaemolyticus food-associated isolates.
    Yang C; Zhang X; Fan H; Li Y; Hu Q; Yang R; Cui Y
    Food Microbiol; 2019 Dec; 84():103270. PubMed ID: 31421783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of direct repeats, spacers and proteins associated with clustered regularly interspaced short palindromic repeat (CRISPR) system of Vibrio parahaemolyticus.
    Baliga P; Shekar M; Venugopal MN
    Mol Genet Genomics; 2019 Feb; 294(1):253-262. PubMed ID: 30357478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic and transcriptomic analyses reveal distinct biological functions for cold shock proteins (VpaCspA and VpaCspD) in Vibrio parahaemolyticus CHN25 during low-temperature survival.
    Zhu C; Sun B; Liu T; Zheng H; Gu W; He W; Sun F; Wang Y; Yang M; Bei W; Peng X; She Q; Xie L; Chen L
    BMC Genomics; 2017 Jun; 18(1):436. PubMed ID: 28583064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation of genomic islands and flanking fragments in Vibrio parahaemolyticus isolates from environmental and clinical sources in Taiwan.
    Chi PS; Wong HC
    Int J Food Microbiol; 2017 Oct; 259():68-76. PubMed ID: 28841447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic functional pandemic strain-specific genes, three genomic islands, two T3SSs in foodborne, and clinical Vibrio parahaemolyticus isolates in China.
    Chao G; Jiao X; Zhou X; Yang Z; Pan Z; Huang J; Zhou L; Qian X
    Foodborne Pathog Dis; 2009; 6(6):689-98. PubMed ID: 19425827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CosR Is a Global Regulator of the Osmotic Stress Response with Widespread Distribution among Bacteria.
    Gregory GJ; Morreale DP; Boyd EF
    Appl Environ Microbiol; 2020 May; 86(10):. PubMed ID: 32169942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonmetabolizable Arabinose Inhibits Vibrio cholerae Growth in M9 Medium with Gluconate as the Sole Carbon Source.
    Golder T; Mukhopadhyay AK; Koley H; Nandy RK
    Jpn J Infect Dis; 2020 Sep; 73(5):343-348. PubMed ID: 32350213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of genes encoding four pathogenicity islands (VPaIs), T6SS, biofilm, and type I pilus in food and clinical strains of Vibrio parahaemolyticus in China.
    Chao G; Jiao X; Zhou X; Wang F; Yang Z; Huang J; Pan Z; Zhou L; Qian X
    Foodborne Pathog Dis; 2010 Jun; 7(6):649-58. PubMed ID: 20132020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transoceanic spreading of pathogenic strains of Vibrio parahaemolyticus with distinctive genetic signatures in the recA gene.
    González-Escalona N; Gavilan RG; Brown EW; Martinez-Urtaza J
    PLoS One; 2015; 10(2):e0117485. PubMed ID: 25679989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic analysis of Vibrio parahaemolyticus intestinal colonization.
    Hubbard TP; Chao MC; Abel S; Blondel CJ; Abel Zur Wiesch P; Zhou X; Davis BM; Waldor MK
    Proc Natl Acad Sci U S A; 2016 May; 113(22):6283-8. PubMed ID: 27185914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.