These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 31133109)

  • 21. Free and Bound Phenolic Compound Content and Antioxidant Activity of Different Cultivated Blue Highland Barley Varieties from the Qinghai-Tibet Plateau.
    Yang XJ; Dang B; Fan MT
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29641469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monitoring Technology for Gamma-Aminobutyric acid Production in Polished Mochi Barley Grains using a Carbon Dioxide Sensor.
    Watanabe Y; Kawata K; Watanabe S
    J Food Sci; 2015 Jun; 80(6):H1418-24. PubMed ID: 25916326
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of apparent ileal amino acid digestibility in barley and canola meal for pigs with the direct, difference, and regression methods.
    Fan MZ; Sauer WC
    J Anim Sci; 1995 Aug; 73(8):2364-74. PubMed ID: 8567474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of feeding hull-less barley on production performance, milk fatty acid composition, and nutrient digestibility of lactating dairy cows.
    Yang Y; Ferreira G; Teets CL; Corl BA; Thomason WE; Griffey CA
    J Dairy Sci; 2017 May; 100(5):3576-3583. PubMed ID: 28318583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of phenolic acids in barley by high-performance liquid chromatography.
    Yu J; Vasanthan T; Temelli F
    J Agric Food Chem; 2001 Sep; 49(9):4352-8. PubMed ID: 11559137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of barley and oat cultivars with different carbohydrate compositions on the intestinal bacterial communities in weaned piglets.
    Pieper R; Jha R; Rossnagel B; Van Kessel AG; Souffrant WB; Leterme P
    FEMS Microbiol Ecol; 2008 Dec; 66(3):556-66. PubMed ID: 19049653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of different cereal grains and ractopamine hydrochloride on performance, carcass characteristics, and fat quality in late-finishing pigs.
    Carr SN; Rincker PJ; Killefer J; Baker DH; Ellis M; McKeith FK
    J Anim Sci; 2005 Jan; 83(1):223-30. PubMed ID: 15583063
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of protected designation of origin Italian meat products obtained from heavy pigs fed barley-based diets.
    Prandini A; Sigolo S; Gallo A; Faeti V; Della Casa G
    J Anim Sci; 2015 Sep; 93(9):4510-23. PubMed ID: 26440350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptome analysis revealed the drought-responsive genes in Tibetan hulless barley.
    Zeng X; Bai L; Wei Z; Yuan H; Wang Y; Xu Q; Tang Y; Nyima T
    BMC Genomics; 2016 May; 17():386. PubMed ID: 27207260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amino acid composition and biological evaluation of the protein quality of high lysine barley genotypes.
    Jood S; Singh M
    Plant Foods Hum Nutr; 2001; 56(2):145-55. PubMed ID: 11318503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suppression of C-hordein synthesis in barley by antisense constructs results in a more balanced amino acid composition.
    Lange M; Vincze E; Wieser H; Schjoerring JK; Holm PB
    J Agric Food Chem; 2007 Jul; 55(15):6074-81. PubMed ID: 17580876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Barley and oat cultivars with diverse carbohydrate composition alter ileal and total tract nutrient digestibility and fermentation metabolites in weaned piglets.
    Jha R; Rossnagel B; Pieper R; Van Kessel A; Leterme P
    Animal; 2010 May; 4(5):724-31. PubMed ID: 22444125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phenolic acids in some cereal grains and their inhibitory effect on starch liquefaction and saccharification.
    Kandil A; Li J; Vasanthan T; Bressler DC
    J Agric Food Chem; 2012 Aug; 60(34):8444-9. PubMed ID: 22793673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenolic compounds of barley grain and their implication in food product discoloration.
    Quinde-Axtell Z; Baik BK
    J Agric Food Chem; 2006 Dec; 54(26):9978-84. PubMed ID: 17177530
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immunochromatography of fusarochromanone mycotoxins.
    Yu JH; Chu FS
    J Assoc Off Anal Chem; 1991; 74(4):655-60. PubMed ID: 1917812
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of ensiling cereal grains (barley, wheat, triticale and rye) on total and pre-caecal digestibility of proximate nutrients and amino acids in pigs.
    Hackl W; Pieper B; Pieper R; Korn U; Zeyner A
    J Anim Physiol Anim Nutr (Berl); 2010 Dec; 94(6):729-35. PubMed ID: 20666865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation and characterization of enzymatically hydrolyzed prolamins from wheat, rye, and barley as references for the immunochemical quantitation of partially hydrolyzed gluten.
    Gessendorfer B; Koehler P; Wieser H
    Anal Bioanal Chem; 2009 Nov; 395(6):1721-8. PubMed ID: 19763549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Apparent and standardized ileal digestibility of amino acids in diverse barley cultivars fed to growing pigs.
    Wang H; Ma X; Xu X; Shi M; Piao X
    Anim Sci J; 2017 Dec; 88(12):1994-2000. PubMed ID: 28730632
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Occurrence of zearalenone in Korean barley and corn foods.
    Park JW; Kim EK; Shon DH; Kim YB
    Food Addit Contam; 2002 Feb; 19(2):158-62. PubMed ID: 11820497
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of β-glucans, phenols, flavor and volatile profiles of hulless barley wine originating from highland areas of China.
    Zhang K; Yang J; Qiao Z; Cao X; Luo Q; Zhao J; Wang F; Zhang W
    Food Chem; 2019 Sep; 293():32-40. PubMed ID: 31151618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.