These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 31133689)

  • 1. Emergent modular neural control drives coordinated motor actions.
    Lemke SM; Ramanathan DS; Guo L; Won SJ; Ganguly K
    Nat Neurosci; 2019 Jul; 22(7):1122-1131. PubMed ID: 31133689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disengagement of Motor Cortex during Long-Term Learning Tracks the Performance Level of Learned Movements.
    Hwang EJ; Dahlen JE; Mukundan M; Komiyama T
    J Neurosci; 2021 Aug; 41(33):7029-7047. PubMed ID: 34244359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Information flow between motor cortex and striatum reverses during skill learning.
    Lemke SM; Celotto M; Maffulli R; Ganguly K; Panzeri S
    Curr Biol; 2024 May; 34(9):1831-1843.e7. PubMed ID: 38604168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impairments in prehension produced by early postnatal sensory motor cortex activity blockade.
    Martin JH; Donarummo L; Hacking A
    J Neurophysiol; 2000 Feb; 83(2):895-906. PubMed ID: 10669503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling between motor cortex and striatum increases during sleep over long-term skill learning.
    Lemke SM; Ramanathan DS; Darevksy D; Egert D; Berke JD; Ganguly K
    Elife; 2021 Sep; 10():. PubMed ID: 34505576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential corticostriatal plasticity during fast and slow motor skill learning in mice.
    Costa RM; Cohen D; Nicolelis MA
    Curr Biol; 2004 Jul; 14(13):1124-34. PubMed ID: 15242609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and plasticity of complex movement representations.
    Singleton AC; Brown AR; Teskey GC
    J Neurophysiol; 2021 Feb; 125(2):628-637. PubMed ID: 33471611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergent coordination underlying learning to reach to grasp with a brain-machine interface.
    Vaidya M; Balasubramanian K; Southerland J; Badreldin I; Eleryan A; Shattuck K; Gururangan S; Slutzky M; Osborne L; Fagg A; Oweiss K; Hatsopoulos NG
    J Neurophysiol; 2018 Apr; 119(4):1291-1304. PubMed ID: 29357477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergent Low-Frequency Activity in Cortico-Cerebellar Networks with Motor Skill Learning.
    Fleischer P; Abbasi A; Fealy AW; Danielsen NP; Sandhu R; Raj PR; Gulati T
    eNeuro; 2023 Feb; 10(2):. PubMed ID: 36750360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor cortical networks for skilled movements have dynamic properties that are related to accurate reaching.
    Putrino DF; Chen Z; Ghosh S; Brown EN
    Neural Plast; 2011; 2011():413543. PubMed ID: 22007332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of Gross Forelimb and Fine Digit Kinematics during Skilled Reaching Acquisition in Rats.
    Bova A; Ferris K; Leventhal DK
    eNeuro; 2021; 8(5):. PubMed ID: 34625461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layer 5 Intratelencephalic Neurons in the Motor Cortex Stably Encode Skilled Movement.
    Shinotsuka T; Tanaka YR; Terada SI; Hatano N; Matsuzaki M
    J Neurosci; 2023 Oct; 43(43):7130-7148. PubMed ID: 37699714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Human Primary Motor Cortex in the Production of Skilled Finger Sequences.
    Yokoi A; Arbuckle SA; Diedrichsen J
    J Neurosci; 2018 Feb; 38(6):1430-1442. PubMed ID: 29305534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skilled forelimb movements in prey catching and in reaching by rats (Rattus norvegicus) and opossums (Monodelphis domestica): relations to anatomical differences in motor systems.
    Ivanco TL; Pellis SM; Whishaw IQ
    Behav Brain Res; 1996 Sep; 79(1-2):163-81. PubMed ID: 8883828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct temporal activity patterns in the rat M1 and red nucleus during skilled versus unskilled limb movement.
    Hermer-Vazquez L; Hermer-Vazquez R; Moxon KA; Kuo KH; Viau V; Zhan Y; Chapin JK
    Behav Brain Res; 2004 Apr; 150(1-2):93-107. PubMed ID: 15033283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociable motor roles of the rat's striatum conform to a somatotopic model.
    Pisa M; Schranz JA
    Behav Neurosci; 1988 Jun; 102(3):429-40. PubMed ID: 3395453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ipsilateral-Dominant Control of Limb Movements in Rodent Posterior Parietal Cortex.
    Soma S; Yoshida J; Kato S; Takahashi Y; Nonomura S; Sugimura YK; RĂ­os A; Kawabata M; Kobayashi K; Kato F; Sakai Y; Isomura Y
    J Neurosci; 2019 Jan; 39(3):485-502. PubMed ID: 30478035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thalamocortical Projections onto Behaviorally Relevant Neurons Exhibit Plasticity during Adult Motor Learning.
    Biane JS; Takashima Y; Scanziani M; Conner JM; Tuszynski MH
    Neuron; 2016 Mar; 89(6):1173-1179. PubMed ID: 26948893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic stability of single-channel neurophysiological correlates of gross and fine reaching movements in the rat.
    Bundy DT; Guggenmos DJ; Murphy MD; Nudo RJ
    PLoS One; 2019; 14(10):e0219034. PubMed ID: 31665145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural integration of reaching and posture: interhemispheric spike correlations in cat motor cortex.
    Putrino D; Mastaglia FL; Ghosh S
    Exp Brain Res; 2010 May; 202(4):765-77. PubMed ID: 20165839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.