These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31133785)

  • 1. Automatic Removal of Cardiac Interference (ARCI): A New Approach for EEG Data.
    Tamburro G; Stone DB; Comani S
    Front Neurosci; 2019; 13():441. PubMed ID: 31133785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new ICA-based fingerprint method for the automatic removal of physiological artifacts from EEG recordings.
    Tamburro G; Fiedler P; Stone D; Haueisen J; Comani S
    PeerJ; 2018; 6():e4380. PubMed ID: 29492336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is Brain Dynamics Preserved in the EEG After Automated Artifact Removal? A Validation of the Fingerprint Method and the Automatic Removal of Cardiac Interference Approach Based on Microstate Analysis.
    Tamburro G; Croce P; Zappasodi F; Comani S
    Front Neurosci; 2020; 14():577160. PubMed ID: 33510607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic Removal of Physiological Artifacts in EEG: The Optimized Fingerprint Method for Sports Science Applications.
    Stone DB; Tamburro G; Fiedler P; Haueisen J; Comani S
    Front Hum Neurosci; 2018; 12():96. PubMed ID: 29618975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic Identification of Artifact-Related Independent Components for Artifact Removal in EEG Recordings.
    Zou Y; Nathan V; Jafari R
    IEEE J Biomed Health Inform; 2016 Jan; 20(1):73-81. PubMed ID: 25415992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Convolutional Neural Networks for Feature-Less Automatic Classification of Independent Components in Multi-Channel Electrophysiological Brain Recordings.
    Croce P; Zappasodi F; Marzetti L; Merla A; Pizzella V; Chiarelli AM
    IEEE Trans Biomed Eng; 2019 Aug; 66(8):2372-2380. PubMed ID: 30582523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic classification of artifactual ICA-components for artifact removal in EEG signals.
    Winkler I; Haufe S; Tangermann M
    Behav Brain Funct; 2011 Aug; 7():30. PubMed ID: 21810266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals.
    Barbati G; Porcaro C; Zappasodi F; Rossini PM; Tecchio F
    Clin Neurophysiol; 2004 May; 115(5):1220-32. PubMed ID: 15066548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ballistocardiogram artifact correction taking into account physiological signal preservation in simultaneous EEG-fMRI.
    Abreu R; Leite M; Jorge J; Grouiller F; van der Zwaag W; Leal A; Figueiredo P
    Neuroimage; 2016 Jul; 135():45-63. PubMed ID: 27012501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Method for ECG Artifact Removal from EEG without Simultaneous ECG.
    Isler JR; Pini N; Lucchini M; Shuffrey LC; Mitsuyama M; Welch MG; Fifer WP; Stark RI; Myers MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3582-3585. PubMed ID: 36086135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromyogram (EMG) Removal by Adding Sources of EMG (ERASE)-A Novel ICA-Based Algorithm for Removing Myoelectric Artifacts From EEG.
    Li Y; Wang PT; Vaidya MP; Flint RD; Liu CY; Slutzky MW; Do AH
    Front Neurosci; 2020; 14():597941. PubMed ID: 33584176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining EEG and eye tracking: identification, characterization, and correction of eye movement artifacts in electroencephalographic data.
    Plöchl M; Ossandón JP; König P
    Front Hum Neurosci; 2012; 6():278. PubMed ID: 23087632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AOAR: an automatic ocular artifact removal approach for multi-channel electroencephalogram data based on non-negative matrix factorization and empirical mode decomposition.
    Gu Y; Li X; Chen S; Li X
    J Neural Eng; 2021 Apr; 18(5):056012. PubMed ID: 33821810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated Detection and Removal of Cardiac and Pulse Interferences from Neonatal EEG Signals.
    Tamburro G; Croce P; Zappasodi F; Comani S
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Artifact Subspace Reconstruction for Automatic EEG Artifact Removal.
    Chang CY; Hsu SH; Pion-Tonachini L; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1242-1245. PubMed ID: 30440615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic cardiac cycle determination directly from EEG-fMRI data by multi-scale peak detection method.
    Wong CK; Luo Q; Zotev V; Phillips R; Chan KWC; Bodurka J
    J Neurosci Methods; 2018 Jul; 304():168-184. PubMed ID: 29614296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic removal of the eye blink artifact from EEG using an ICA-based template matching approach.
    Li Y; Ma Z; Lu W; Li Y
    Physiol Meas; 2006 Apr; 27(4):425-36. PubMed ID: 16537983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG artifact elimination by extraction of ICA-component features using image processing algorithms.
    Radüntz T; Scouten J; Hochmuth O; Meffert B
    J Neurosci Methods; 2015 Mar; 243():84-93. PubMed ID: 25666892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features.
    Radüntz T; Scouten J; Hochmuth O; Meffert B
    J Neural Eng; 2017 Aug; 14(4):046004. PubMed ID: 28497769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Method Based on Combination of Independent Component Analysis and Ensemble Empirical Mode Decomposition for Removing Electrooculogram Artifacts From Multichannel Electroencephalogram Signals.
    Teng CL; Zhang YY; Wang W; Luo YY; Wang G; Xu J
    Front Neurosci; 2021; 15():729403. PubMed ID: 34707475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.