BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31134188)

  • 1. Structural Changes in Polymeric Gel Scaffolds Around the Overlap Concentration.
    Zhang H; Wehrman MD; Schultz KM
    Front Chem; 2019; 7():317. PubMed ID: 31134188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing rheological properties and microstructure of thioester networks during degradation.
    Desai S; Carberry BJ; Anseth KS; Schultz KM
    Soft Matter; 2023 Oct; 19(38):7429-7442. PubMed ID: 37743747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple particle tracking microrheology measured using bi-disperse probe diameters.
    Wehrman MD; Lindberg S; Schultz KM
    Soft Matter; 2018 Jul; 14(28):5811-5820. PubMed ID: 29974108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determining How Human Mesenchymal Stem Cells Change Their Degradation Strategy in Response to Microenvironmental Stiffness.
    Daviran M; Catalano J; Schultz KM
    Biomacromolecules; 2020 Aug; 21(8):3056-3068. PubMed ID: 32559386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining Microfluidics and Microrheology to Determine Rheological Properties of Soft Matter during Repeated Phase Transitions.
    Wehrman MD; Milstrey MJ; Lindberg S; Schultz KM
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29733318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the dynamic transition of hydrogenated castor oil gels measured via multiple particle tracking microrheology.
    Wehrman MD; Lindberg S; Schultz KM
    Soft Matter; 2016 Aug; 12(30):6463-72. PubMed ID: 27396611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gelation of Covalently Cross-Linked PEG-Heparin Hydrogels.
    Schultz KM; Baldwin AD; Kiick KL; Furst EM
    Macromolecules; 2009 Jul; 42(14):5310-5316. PubMed ID: 21494422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheological characterization of dynamic remodeling of the pericellular region by human mesenchymal stem cell-secreted enzymes in well-defined synthetic hydrogel scaffolds.
    Daviran M; Longwill SM; Casella JF; Schultz KM
    Soft Matter; 2018 Apr; 14(16):3078-3089. PubMed ID: 29667686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation of Bulk Degradation and Molecular Release from Enzymatically Degradable Polymeric Hydrogels.
    Wu N; Schultz KM
    Biomacromolecules; 2021 Nov; 22(11):4489-4500. PubMed ID: 34516089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring human mesenchymal stem cell remodeling in hydrogels with a step-change in elastic modulus.
    McGlynn JA; Schultz KM
    Soft Matter; 2022 Aug; 18(34):6340-6352. PubMed ID: 35968833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Rheological Study on the Effect of Tethering Pro- and Anti-Inflammatory Cytokines into Hydrogels on Human Mesenchymal Stem Cell Migration, Degradation, and Morphology.
    O'Shea TC; Croland KJ; Salem A; Urbanski R; Schultz KM
    Biomacromolecules; 2024 Jul; ():. PubMed ID: 38961715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human mesenchymal stem cell-engineered length scale dependent rheology of the pericellular region measured with bi-disperse multiple particle tracking microrheology.
    McGlynn JA; Druggan KJ; Croland KJ; Schultz KM
    Acta Biomater; 2021 Feb; 121():405-417. PubMed ID: 33278674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gelation phase diagrams of colloidal rod systems measured over a large composition space.
    He S; Caggioni M; Lindberg S; Schultz KM
    RSC Adv; 2022 Apr; 12(20):12902-12912. PubMed ID: 35496333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the Kinetics and Mechanism of Degradation of Human Mesenchymal Stem Cell-Laden Poly(ethylene glycol) Hydrogels.
    Mazzeo MS; Chai T; Daviran M; Schultz KM
    ACS Appl Bio Mater; 2019 Jan; 2(1):81-92. PubMed ID: 31555760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microrheology and microstructure of Fmoc-derivative hydrogels.
    Aufderhorst-Roberts A; Frith WJ; Kirkland M; Donald AM
    Langmuir; 2014 Apr; 30(15):4483-92. PubMed ID: 24684622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration.
    Dikovsky D; Bianco-Peled H; Seliktar D
    Biomaterials; 2006 Mar; 27(8):1496-506. PubMed ID: 16243393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheological and structural properties of aqueous alginate during gelation via the Ugi multicomponent condensation reaction.
    Bu H; Kjøniksen AL; Knudsen KD; Nyström B
    Biomacromolecules; 2004; 5(4):1470-9. PubMed ID: 15244467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells.
    Brunelle AR; Horner CB; Low K; Ico G; Nam J
    Acta Biomater; 2018 Jan; 66():166-176. PubMed ID: 29128540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds.
    Arcaute K; Mann B; Wicker R
    Acta Biomater; 2010 Mar; 6(3):1047-54. PubMed ID: 19683602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.