These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 3113421)
21. The role of residues outside the active site: structural basis for function of C191 mutants of Escherichia coli aspartate aminotransferase. Jeffery CJ; Gloss LM; Petsko GA; Ringe D Protein Eng; 2000 Feb; 13(2):105-12. PubMed ID: 10708649 [TBL] [Abstract][Full Text] [Related]
22. Active-site Arg --> Lys substitutions alter reaction and substrate specificity of aspartate aminotransferase. Vacca RA; Giannattasio S; Graber R; Sandmeier E; Marra E; Christen P J Biol Chem; 1997 Aug; 272(35):21932-7. PubMed ID: 9268327 [TBL] [Abstract][Full Text] [Related]
23. Strain is more important than electrostatic interaction in controlling the pKa of the catalytic group in aspartate aminotransferase. Mizuguchi H; Hayashi H; Okada K; Miyahara I; Hirotsu K; Kagamiyama H Biochemistry; 2001 Jan; 40(2):353-60. PubMed ID: 11148029 [TBL] [Abstract][Full Text] [Related]
24. Replacement of active-site lysine-239 of thermostable aspartate aminotransferase by S-(2-aminoethyl)cysteine: properties of the mutant enzyme. Matsushima Y; Kim DW; Yoshimura T; Kuramitsu S; Kagamiyama H; Esaki N; Soda K J Biochem; 1994 Jan; 115(1):108-12. PubMed ID: 8188615 [TBL] [Abstract][Full Text] [Related]
25. Conformational change in aspartate aminotransferase on substrate binding induces strain in the catalytic group and enhances catalysis. Hayashi H; Mizuguchi H; Miyahara I; Nakajima Y; Hirotsu K; Kagamiyama H J Biol Chem; 2003 Mar; 278(11):9481-8. PubMed ID: 12488449 [TBL] [Abstract][Full Text] [Related]
26. Aminolevulinate synthase: lysine 313 is not essential for binding the pyridoxal phosphate cofactor but is essential for catalysis. Ferreira GC; Vajapey U; Hafez O; Hunter GA; Barber MJ Protein Sci; 1995 May; 4(5):1001-6. PubMed ID: 7663334 [TBL] [Abstract][Full Text] [Related]
27. The role of Lys272 in the pyridoxal 5-phosphate active site of Synechococcus glutamate-1-semialdehyde aminotransferase. Grimm B; Smith MA; von Wettstein D Eur J Biochem; 1992 Jun; 206(2):579-85. PubMed ID: 1597195 [TBL] [Abstract][Full Text] [Related]
28. Crystal structure of histidinol phosphate aminotransferase (HisC) from Escherichia coli, and its covalent complex with pyridoxal-5'-phosphate and l-histidinol phosphate. Sivaraman J; Li Y; Larocque R; Schrag JD; Cygler M; Matte A J Mol Biol; 2001 Aug; 311(4):761-76. PubMed ID: 11518529 [TBL] [Abstract][Full Text] [Related]
29. A hydrogen-bonding network modulating enzyme function: asparagine-194 and tyrosine-225 of Escherichia coli aspartate aminotransferase. Yano T; Mizuno T; Kagamiyama H Biochemistry; 1993 Feb; 32(7):1810-5. PubMed ID: 8439541 [TBL] [Abstract][Full Text] [Related]
30. Site-specific methylation of a strategic lysyl residue in aspartate aminotransferase. Roberts WJ; Hubert E; Iriarte A; Martinez-Carrion M J Biol Chem; 1988 May; 263(15):7196-202. PubMed ID: 3130380 [TBL] [Abstract][Full Text] [Related]
31. Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure. Kirsch JF; Eichele G; Ford GC; Vincent MG; Jansonius JN; Gehring H; Christen P J Mol Biol; 1984 Apr; 174(3):497-525. PubMed ID: 6143829 [TBL] [Abstract][Full Text] [Related]
32. Identification of Arg-12 in the active site of Escherichia coli K1 CMP-sialic acid synthetase. Stoughton DM; Zapata G; Picone R; Vann WF Biochem J; 1999 Oct; 343 Pt 2(Pt 2):397-402. PubMed ID: 10510306 [TBL] [Abstract][Full Text] [Related]
34. Direct Brønsted analysis of the restoration of activity to a mutant enzyme by exogenous amines. Toney MD; Kirsch JF Science; 1989 Mar; 243(4897):1485-8. PubMed ID: 2538921 [TBL] [Abstract][Full Text] [Related]
35. 2.8-A-resolution crystal structure of an active-site mutant of aspartate aminotransferase from Escherichia coli. Smith DL; Almo SC; Toney MD; Ringe D Biochemistry; 1989 Oct; 28(20):8161-7. PubMed ID: 2513875 [TBL] [Abstract][Full Text] [Related]
36. The structural basis for the altered substrate specificity of the R292D active site mutant of aspartate aminotransferase from E. coli. Almo SC; Smith DL; Danishefsky AT; Ringe D Protein Eng; 1994 Mar; 7(3):405-12. PubMed ID: 7909946 [TBL] [Abstract][Full Text] [Related]
37. Thermostable aspartate aminotransferase from a thermophilic Bacillus species. Gene cloning, sequence determination, and preliminary x-ray characterization. Sung MH; Tanizawa K; Tanaka H; Kuramitsu S; Kagamiyama H; Hirotsu K; Okamoto A; Higuchi T; Soda K J Biol Chem; 1991 Feb; 266(4):2567-72. PubMed ID: 1990006 [TBL] [Abstract][Full Text] [Related]
38. Active-site labeling of aspartate aminotransferases by the beta,gamma-unsaturated amino acid vinylglycine. Gehring H; Rando RR; Christen P Biochemistry; 1977 Nov; 16(22):4832-6. PubMed ID: 911793 [TBL] [Abstract][Full Text] [Related]
39. A QM/MM simulation study of transamination reaction at the active site of aspartate aminotransferase: Free energy landscape and proton transfer pathways. Dutta Banik S; Bankura A; Chandra A J Comput Chem; 2020 Dec; 41(32):2684-2694. PubMed ID: 32932551 [TBL] [Abstract][Full Text] [Related]
40. Reaction of aspartate aminotransferase with L-erythro-3-hydroxyaspartate: involvement of Tyr70 in stabilization of the catalytic intermediates. Hayashi H; Kagamiyama H Biochemistry; 1995 Jul; 34(29):9413-23. PubMed ID: 7626611 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]