These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 31134236)

  • 1. Understanding structural flexibility of the paddle-wheel Zn-SBU motif in MOFs: influence of pillar ligands.
    Ryzhikov MR; Kozlova SG
    Phys Chem Chem Phys; 2019 Jun; 21(22):11977-11982. PubMed ID: 31134236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aromatic Substituent Effects on the Flexibility of Metal-Organic Frameworks.
    Hahm H; Yoo K; Ha H; Kim M
    Inorg Chem; 2016 Aug; 55(15):7576-81. PubMed ID: 27414764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal properties of Zn
    Kozlova SG; Gabuda SP
    Sci Rep; 2017 Sep; 7(1):11505. PubMed ID: 28912483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secondary building units as the turning point in the development of the reticular chemistry of MOFs.
    Kalmutzki MJ; Hanikel N; Yaghi OM
    Sci Adv; 2018 Oct; 4(10):eaat9180. PubMed ID: 30310868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reticular Synthesis of a Series of HKUST-like MOFs with Carbon Dioxide Capture and Separation.
    He H; Sun F; Ma S; Zhu G
    Inorg Chem; 2016 Sep; 55(17):9071-6. PubMed ID: 27556744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of porous Ni-based metal-organic frameworks containing paddle-wheel type inorganic building units via high-throughput methods.
    Maniam P; Stock N
    Inorg Chem; 2011 Jun; 50(11):5085-97. PubMed ID: 21539354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermochemistry of paddle wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1.
    Bhunia MK; Hughes JT; Fettinger JC; Navrotsky A
    Langmuir; 2013 Jun; 29(25):8140-5. PubMed ID: 23724924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials.
    Chun H; Dybtsev DN; Kim H; Kim K
    Chemistry; 2005 Jun; 11(12):3521-9. PubMed ID: 15761853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Adsorption of Small Molecules on the Copper Paddle-Wheel: Influence of the Multi-Reference Ground State.
    Krstić M; Fink K; Sharapa DI
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hydrothermally stable Zn(ii)-based metal-organic framework: structural modulation and gas adsorption.
    Zhang X; Zhang YZ; Zhang DS; Zhu B; Li JR
    Dalton Trans; 2015 Sep; 44(35):15697-702. PubMed ID: 26261898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and photoluminescence tuning features of Mn(2+)- and Ln(3+)-activated Zn-based heterometal-organic frameworks (MOFs) with a single 5-methylisophthalic acid ligand.
    Bo QB; Wang HY; Wang DQ; Zhang ZW; Miao JL; Sun GX
    Inorg Chem; 2011 Oct; 50(20):10163-77. PubMed ID: 21923126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A twofold interpenetrating three-dimensional zinc-organic framework built from naphthalene-1,4-dicarboxylate and 4,4'-bipyridine ligands.
    Cui GG; Yang XX; Yang JP
    Acta Crystallogr C Struct Chem; 2014 May; 70(Pt 5):498-501. PubMed ID: 24816021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Versatile Tailoring of NH
    Guo XG; Zhang ZY; Qiu S; Su X; Wang YB; Sun X
    Chemistry; 2017 Dec; 23(70):17727-17733. PubMed ID: 29027280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Chemistry of Nucleation: In Situ Pair Distribution Function Analysis of Secondary Building Units During UiO-66 MOF Formation.
    Xu H; Sommer S; Broge NLN; Gao J; Iversen BB
    Chemistry; 2019 Feb; 25(8):2051-2058. PubMed ID: 30480850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A zeolite-like zinc phosphonocarboxylate framework and its transformation into two- and three-dimensional structures.
    Chen Z; Zhou Y; Weng L; Yuan C; Zhao D
    Chem Asian J; 2007 Dec; 2(12):1549-54. PubMed ID: 17985327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity.
    Wang Z; Tanabe KK; Cohen SM
    Inorg Chem; 2009 Jan; 48(1):296-306. PubMed ID: 19053339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, structures, and properties of two three-dimensional metal-organic frameworks, based on concurrent ligand extension.
    Shi D; Ren Y; Jiang H; Cai B; Lu J
    Inorg Chem; 2012 Jun; 51(12):6498-506. PubMed ID: 22670898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing novel Cd(II) metal-organic frameworks based on different highly connected secondary building units via alteration of reaction conditions.
    Liu YQ; Ren GJ; Zhang YH; Xu J; Bu XH
    Dalton Trans; 2015 Dec; 44(47):20361-6. PubMed ID: 26460604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent induced single-crystal to single-crystal structural transformation and concomitant transmetalation in a 3D cationic Zn(II)-framework.
    Sen S; Neogi S; Rissanen K; Bharadwaj PK
    Chem Commun (Camb); 2015 Feb; 51(15):3173-6. PubMed ID: 25605040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-organic frameworks constructed from versatile [WS4Cu(x)](x-2) units: micropores in highly interpenetrated systems.
    Lu ZZ; Zhang R; Pan ZR; Li YZ; Guo ZJ; Zheng HG
    Chemistry; 2012 Mar; 18(10):2812-24. PubMed ID: 22307561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.