These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31134375)

  • 21. Motor cognitive dual tasking: early detection of gait impairment, fall risk and cognitive decline.
    Bridenbaugh SA; Kressig RW
    Z Gerontol Geriatr; 2015 Jan; 48(1):15-21. PubMed ID: 25633391
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative gait disturbances in older adults with cognitive impairments.
    Bridenbaugh SA; Kressig RW
    Curr Pharm Des; 2014; 20(19):3165-72. PubMed ID: 24050167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of body-worn movement monitor technology for balance and gait rehabilitation.
    Horak F; King L; Mancini M
    Phys Ther; 2015 Mar; 95(3):461-70. PubMed ID: 25504484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differences in coding provided by proprioceptive and vestibular sensory signals may contribute to lateral instability in vestibular loss subjects.
    Allum JH; Oude Nijhuis LB; Carpenter MG
    Exp Brain Res; 2008 Jan; 184(3):391-410. PubMed ID: 17849108
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Central not peripheral vestibular processing impairs gait coordination.
    Gimmon Y; Millar J; Pak R; Liu E; Schubert MC
    Exp Brain Res; 2017 Nov; 235(11):3345-3355. PubMed ID: 28819687
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Gait disorders due to neurological conditions].
    van de Warrenburg BP; Snijders AH; Munneke M; Bloem BR
    Ned Tijdschr Geneeskd; 2007 Feb; 151(7):395-400. PubMed ID: 17343137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gait disorders in the elderly and dual task gait analysis: a new approach for identifying motor phenotypes.
    Auvinet B; Touzard C; Montestruc F; Delafond A; Goeb V
    J Neuroeng Rehabil; 2017 Jan; 14(1):7. PubMed ID: 28143497
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Automatic recognition and analysis of hemiplegia gait].
    Zhu Y; Xu W; Wang R; Tong Y; Lu W; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Apr; 36(2):306-314. PubMed ID: 31016949
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The "butterfly diagram": A gait marker for neurological and cerebellar impairment in people with multiple sclerosis.
    Kalron A; Frid L
    J Neurol Sci; 2015 Nov; 358(1-2):92-100. PubMed ID: 26318202
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of gait analysis on pathology identification and surgical recommendations in children with spina bifida.
    Mueske NM; Õunpuu S; Ryan DD; Healy BS; Thomson J; Choi P; Wren TAL
    Gait Posture; 2019 Jan; 67():128-132. PubMed ID: 30321794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Machine Learning Approach to Automated Gait Analysis for the Noldus Catwalk System.
    Frohlich H; Claes K; De Wolf C; Van Damme X; Michel A
    IEEE Trans Biomed Eng; 2018 May; 65(5):1133-1139. PubMed ID: 28858780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait.
    Kamruzzaman J; Begg RK
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2479-90. PubMed ID: 17153205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Otoneurological findings in spinocerebellar ataxia.
    Zeigelboim BS; Ghizoni Teive HA; Sampaio R; Arruda WO; Jurkiewicz AL; Marques JM; Klagemberg KF; Mengelberg H; Liberalesso PB
    Int Tinnitus J; 2011; 16(2):161-7. PubMed ID: 22249876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic footprint based locomotion sway assessment in α-synucleinopathic mice using Fast Fourier Transform and Low Pass Filter.
    Timotius IK; Canneva F; Minakaki G; Pasluosta C; Moceri S; Casadei N; Riess O; Winkler J; Klucken J; von Hörsten S; Eskofier B
    J Neurosci Methods; 2018 Feb; 296():1-11. PubMed ID: 29253577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human Gait Modeling and Analysis Using a Semi-Markov Process With Ground Reaction Forces.
    Ma H; Liao WH
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):597-607. PubMed ID: 27352393
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Instrumented gait and movement analysis of musculoskeletal diseases].
    Sander K; Rosenbaum D; Böhm H; Layher F; Lindner T; Wegener R; Wolf SI; Seehaus F
    Orthopade; 2012 Oct; 41(10):802-19. PubMed ID: 23052847
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling, Detecting, and Tracking Freezing of Gait in Parkinson Disease Using Inertial Sensors.
    Prateek GV; Skog I; McNeely ME; Duncan RP; Earhart GM; Nehorai A
    IEEE Trans Biomed Eng; 2018 Oct; 65(10):2152-2161. PubMed ID: 29989948
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vestibular manifestations of cerebellar ectopia. (Sub-group of Chiari I).
    Bertrand RA; Martinez SN; Robert F
    Adv Otorhinolaryngol; 1973; 19():355-66. PubMed ID: 4541599
    [No Abstract]   [Full Text] [Related]  

  • 39. Three-dimensional gait analysis can shed new light on walking in patients with haemophilia.
    Lobet S; Detrembleur C; Massaad F; Hermans C
    ScientificWorldJournal; 2013; 2013():284358. PubMed ID: 23766686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of a neuro-fuzzy network for gait event detection using electromyography in the child with cerebral palsy.
    Lauer RT; Smith BT; Betz RR
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1532-40. PubMed ID: 16189966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.