These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 31134433)

  • 41. Unsupervised formation of vocalization-sensitive neurons: a cortical model based on short-term and homeostatic plasticity.
    Lee TP; Buonomano DV
    Neural Comput; 2012 Oct; 24(10):2579-603. PubMed ID: 22845822
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A self-organizing short-term dynamical memory network.
    Federer C; Zylberberg J
    Neural Netw; 2018 Oct; 106():30-41. PubMed ID: 30007123
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cell Assembly Signatures Defined by Short-Term Synaptic Plasticity in Cortical Networks.
    Carrillo-Reid L; Lopez-Huerta VG; Garcia-Munoz M; Theiss S; Arbuthnott GW
    Int J Neural Syst; 2015 Nov; 25(7):1550026. PubMed ID: 26173906
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences.
    Tully PJ; Lindén H; Hennig MH; Lansner A
    PLoS Comput Biol; 2016 May; 12(5):e1004954. PubMed ID: 27213810
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neural networks counting chimes.
    Amit DJ
    Proc Natl Acad Sci U S A; 1988 Apr; 85(7):2141-5. PubMed ID: 3353371
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A few strong connections: optimizing information retention in neuronal avalanches.
    Chen W; Hobbs JP; Tang A; Beggs JM
    BMC Neurosci; 2010 Jan; 11():3. PubMed ID: 20053290
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Retrospective and prospective persistent activity induced by Hebbian learning in a recurrent cortical network.
    Mongillo G; Amit DJ; Brunel N
    Eur J Neurosci; 2003 Oct; 18(7):2011-24. PubMed ID: 14622234
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Energy efficient synaptic plasticity.
    Li HL; van Rossum MC
    Elife; 2020 Feb; 9():. PubMed ID: 32053106
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Input-dependent learning rule for the memory of spatiotemporal sequences in hippocampal network with theta phase precession.
    Wu Z; Yamaguchi Y
    Biol Cybern; 2004 Feb; 90(2):113-24. PubMed ID: 14999478
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Asymmetric synaptic depression in cortical networks.
    Chelaru MI; Dragoi V
    Cereb Cortex; 2008 Apr; 18(4):771-88. PubMed ID: 17693394
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synaptic computation.
    Abbott LF; Regehr WG
    Nature; 2004 Oct; 431(7010):796-803. PubMed ID: 15483601
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synaptic dynamics: linear model and adaptation algorithm.
    Yousefi A; Dibazar AA; Berger TW
    Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A biophysically based neural model of matching law behavior: melioration by stochastic synapses.
    Soltani A; Wang XJ
    J Neurosci; 2006 Apr; 26(14):3731-44. PubMed ID: 16597727
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Online unsupervised formation of cell assemblies for the encoding of multiple cognitive maps.
    Salihoglu U; Bersini H; Yamaguchi Y; Molter C
    Neural Netw; 2009; 22(5-6):687-96. PubMed ID: 19615854
    [TBL] [Abstract][Full Text] [Related]  

  • 55. External excitatory stimuli can terminate bursting in neural network models.
    Franaszczuk PJ; Kudela P; Bergey GK
    Epilepsy Res; 2003 Feb; 53(1-2):65-80. PubMed ID: 12576169
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synaptic Correlates of Working Memory Capacity.
    Mi Y; Katkov M; Tsodyks M
    Neuron; 2017 Jan; 93(2):323-330. PubMed ID: 28041884
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Emergent spatial synaptic structure from diffusive plasticity.
    Sweeney Y; Clopath C
    Eur J Neurosci; 2017 Apr; 45(8):1057-1067. PubMed ID: 27206794
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Emergence of preferred firing sequences in large spiking neural networks during simulated neuronal development.
    Iglesias J; Villa AE
    Int J Neural Syst; 2008 Aug; 18(4):267-77. PubMed ID: 18763727
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A neural network model of memory and higher cognitive functions.
    Vogel DD
    Int J Psychophysiol; 2005 Jan; 55(1):3-21. PubMed ID: 15598512
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Balanced excitation and inhibition are required for high-capacity, noise-robust neuronal selectivity.
    Rubin R; Abbott LF; Sompolinsky H
    Proc Natl Acad Sci U S A; 2017 Oct; 114(44):E9366-E9375. PubMed ID: 29042519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.