BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31135148)

  • 1. Enantioselective Catabolism of Napropamide Chiral Enantiomers in Sphingobium sp. A1 and B2.
    Huang J; Chen D; Cheng X; Liu G; Wang G; Jiang J
    J Agric Food Chem; 2019 Jun; 67(24):6819-6827. PubMed ID: 31135148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferential catabolism of the (S)-enantiomer of the herbicide napropamide mediated by the enantioselective amidohydrolase SnaH and the dioxygenase Snpd in Sphingobium sp. strain B2.
    Huang J; Chen D; Jiang J
    Environ Microbiol; 2020 Jan; 22(1):286-296. PubMed ID: 31667998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chiral separation and enantioselective degradation of the chiral herbicide napropamide.
    Qi Y; Liu D; Sun M; Di S; Wang P; Zhou Z
    Chirality; 2014 Feb; 26(2):108-13. PubMed ID: 24436218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioselective Catabolism of the Two Enantiomers of the Phenoxyalkanoic Acid Herbicide Dichlorprop by
    Zhang L; Hang P; Zhou XY; Qiao WJ; Jiang JD
    J Agric Food Chem; 2020 Jul; 68(26):6967-6976. PubMed ID: 32530641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereoselective degradation pathway of amide chiral herbicides and its impacts on plant and bacterial communities in integrated vertical flow constructed wetlands.
    Zheng Y; Zhang D; Sun Z; Yang Q; Liu Y; Cao T; Chen R; Dzakpasu M; Wang XC
    Bioresour Technol; 2022 May; 351():126997. PubMed ID: 35292382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective phytotoxicity and bioacitivity of the enantiomers of the herbicide napropamide.
    Qi Y; Liu D; Zhao W; Liu C; Zhou Z; Wang P
    Pestic Biochem Physiol; 2015 Nov; 125():38-44. PubMed ID: 26615149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Basis and Evolutionary Origin of 1-Nitronaphthalene Catabolism in
    Li T; Xu J; Brower AL; Xu ZJ; Xu Y; Spain JC; Zhou NY
    Appl Environ Microbiol; 2023 Jan; 89(1):e0172822. PubMed ID: 36622195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Two-Component Monooxygenase MeaXY Initiates the Downstream Pathway of Chloroacetanilide Herbicide Catabolism in Sphingomonads.
    Cheng M; Meng Q; Yang Y; Chu C; Chen Q; Li Y; Cheng D; Hong Q; Yan X; He J
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28115384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantiomeric environmental behavior, oxidative stress and toxin release of harmful cyanobacteria Microcystis aeruginosa in response to napropamide and acetochlor.
    Xie J; Zhao L; Liu K; Liu W
    Environ Pollut; 2019 Mar; 246():728-733. PubMed ID: 30623828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioseparation of four amide herbicide stereoisomers using high-performance liquid chromatography.
    Xie J; Zhao L; Liu K; Guo F; Liu W
    J Chromatogr A; 2016 Nov; 1471():145-154. PubMed ID: 27760706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Identification and degradation characteristics of a napropamide-degrading bacterium strain].
    Zhang C; Wu XM; Long YH; Li M; Li RY; Yin XH
    Ying Yong Sheng Tai Xue Bao; 2016 Oct; 27(10):3371-3378. PubMed ID: 29726165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Genomic Analysis of Carbofuran-Degrading Sphingomonads Reveals the Carbofuran Catabolism Mechanism in
    Jiang W; Zhang M; Gao S; Zhu Q; Qiu J; Yan X; Xin F; Jiang M; Hong Q
    Appl Environ Microbiol; 2022 Nov; 88(22):e0102422. PubMed ID: 36314801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coinducible Catabolism of 1-Naphthol via Synergistic Regulation of the Initial Hydroxylase Genes in
    Huang J; Chen D; Kong X; Wu S; Chen K; Jiang J
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33771783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of acetochlor by a bacterial consortium of Rhodococcus sp.T3-1, Delftia sp.T3-6 and Sphingobium sp.MEA3-1.
    Hou Y; Dong W; Wang F; Li J; Shen W; Li Y; Cui Z
    Lett Appl Microbiol; 2014 Jul; 59(1):35-42. PubMed ID: 24605783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselective degradation and chiral stability of the herbicide fluazifop-butyl in soil and water.
    Qi Y; Liu D; Luo M; Jing X; Wang P; Zhou Z
    Chemosphere; 2016 Mar; 146():315-22. PubMed ID: 26735732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sphingobium sp. HV3 degrades both herbicides and polyaromatic hydrocarbons using ortho- and meta-pathways with differential expression shown by RT-PCR.
    Sipilä TP; Väisänen P; Paulin L; Yrjälä K
    Biodegradation; 2010 Sep; 21(5):771-84. PubMed ID: 20182771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced leaching of the herbicide MCPA after bioaugmentation with a formulated and stored Sphingobium sp.
    Önneby K; Håkansson S; Pizzul L; Stenström J
    Biodegradation; 2014 Apr; 25(2):291-300. PubMed ID: 23982656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of two novel hydrolases from Sphingopyxis sp. DBS4 for enantioselective degradation of chiral herbicide diclofop-methyl.
    Mao Z; Song M; Zhao R; Liu Y; Zhu Y; Liu X; Liang H; Zhang H; Wu X; Wang G; Li F; Zhang L
    J Hazard Mater; 2024 May; 469():133967. PubMed ID: 38457978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel esterase LanE from Edaphocola flava HME-24 and the enantioselective degradation mechanism of herbicide lactofen.
    Hu T; Xiang Y; Chen Q; Shang N; Xu M; Huang X
    Ecotoxicol Environ Saf; 2020 Dec; 205():111141. PubMed ID: 32846294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of chiral herbicides with soil microorganisms, algae and vascular plants.
    Asad MAU; Lavoie M; Song H; Jin Y; Fu Z; Qian H
    Sci Total Environ; 2017 Feb; 580():1287-1299. PubMed ID: 28003051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.