BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31135232)

  • 21. Synthesis of novel bis-sulfone derivatives and their inhibition properties on some metabolic enzymes including carbonic anhydrase, acetylcholinesterase, and butyrylcholinesterase.
    Biçer A; Kaya R; Anıl B; Turgut Cin G; Gülcin İ; Gültekin MS
    J Biochem Mol Toxicol; 2019 Nov; 33(11):e22401. PubMed ID: 31581370
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of cholinesterases by safranin O: Integration of inhibition kinetics with molecular docking simulations.
    Onder S; Sari S; Tacal O
    Arch Biochem Biophys; 2021 Feb; 698():108728. PubMed ID: 33345803
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis, Characterization and Cholinesterase Inhibition Studies of New Arylidene Aminothiazolylethanone Derivatives.
    Channar PA; Shah MS; Saeed A; Khan SU; Larik FA; Shabir G; Iqbal J
    Med Chem; 2017; 13(7):648-653. PubMed ID: 28266279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toxicological effects of some antiparasitic drugs on equine liver glutathione S-Transferase enzyme activity.
    Turkan F; Harbi Calimli M; Akgun A; Gulbagca F; Sen F
    J Pharm Biomed Anal; 2020 Feb; 180():113048. PubMed ID: 31887670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel 12-hydroxydehydroabietylamine derivatives act as potent and selective butyrylcholinesterase inhibitors.
    Loesche A; Wiemann J; Rohmer M; Brandt W; Csuk R
    Bioorg Chem; 2019 Sep; 90():103092. PubMed ID: 31280014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flavonols and 4-thioflavonols as potential acetylcholinesterase and butyrylcholinesterase inhibitors: Synthesis, structure-activity relationship and molecular docking studies.
    Mughal EU; Sadiq A; Ashraf J; Zafar MN; Sumrra SH; Tariq R; Mumtaz A; Javid A; Khan BA; Ali A; Javed CO
    Bioorg Chem; 2019 Oct; 91():103124. PubMed ID: 31319297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Environmental exposure to glyphosate does not inhibit human acetylcholinesterase and butyrylcholinesterase.
    Kolić D; Pehar V; Kovarik Z
    Arh Hig Rada Toksikol; 2024 Mar; 75(1):76-80. PubMed ID: 38548375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Copper (II) and zinc (II) complexes with flavanone derivatives: Identification of potential cholinesterase inhibitors by on-flow assays.
    Sarria AL; Vilela AF; Frugeri BM; Fernandes JB; Carlos RM; da Silva MF; Cass QB; Cardoso CL
    J Inorg Biochem; 2016 Nov; 164():141-149. PubMed ID: 27665317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of some tetrahydropyrimidine-5-carboxylates, determination of their metal chelating effects and inhibition profiles against acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase.
    Sujayev A; Garibov E; Taslimi P; Gulçin İ; Gojayeva S; Farzaliyev V; Alwasel SH; Supuran CT
    J Enzyme Inhib Med Chem; 2016 Dec; 31(6):1531-9. PubMed ID: 27050248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural aspects of 4-aminoquinolines as reversible inhibitors of human acetylcholinesterase and butyrylcholinesterase.
    Bosak A; Opsenica DM; Šinko G; Zlatar M; Kovarik Z
    Chem Biol Interact; 2019 Aug; 308():101-109. PubMed ID: 31100281
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of acetylcholinesterase and butyrylcholinesterase by chlorpyrifos-oxon.
    Amitai G; Moorad D; Adani R; Doctor BP
    Biochem Pharmacol; 1998 Aug; 56(3):293-9. PubMed ID: 9744565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel potent pyridoxine-based inhibitors of AChE and BChE, structural analogs of pyridostigmine, with improved in vivo safety profile.
    Strelnik AD; Petukhov AS; Zueva IV; Zobov VV; Petrov KA; Nikolsky EE; Balakin KV; Bachurin SO; Shtyrlin YG
    Bioorg Med Chem Lett; 2016 Aug; 26(16):4092-4. PubMed ID: 27377327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phytochemical content, antioxidant activity, and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, α-amylase, butyrylcholinesterase, and α-glycosidase enzymes.
    Bursal E; Aras A; Kılıç Ö; Taslimi P; Gören AC; Gülçin İ
    J Food Biochem; 2019 Mar; 43(3):e12776. PubMed ID: 31353544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Malathion, carbofuran and paraquat inhibit Bungarus sindanus (krait) venom acetylcholinesterase and human serum butyrylcholinesterase in vitro.
    Ahmed M; Rocha JB; Mazzanti CM; Morsch AL; Cargnelutti D; Corrêa M; Loro V; Morsch VM; Schetinger MR
    Ecotoxicology; 2007 May; 16(4):363-9. PubMed ID: 17364237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds - Determination of their carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibition properties.
    Gülçin İ; Trofimov B; Kaya R; Taslimi P; Sobenina L; Schmidt E; Petrova O; Malysheva S; Gusarova N; Farzaliyev V; Sujayev A; Alwasel S; Supuran CT
    Bioorg Chem; 2020 Oct; 103():104171. PubMed ID: 32891857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel amides of 1,1-bis-(carboxymethylthio)-1-arylethanes: Synthesis, characterization, acetylcholinesterase, butyrylcholinesterase, and carbonic anhydrase inhibitory properties.
    Taslimi P; Osmanova S; Caglayan C; Turkan F; Sardarova S; Farzaliyev V; Sujayev A; Sadeghian N; Gulçin İ
    J Biochem Mol Toxicol; 2018 Sep; 32(9):e22191. PubMed ID: 29992664
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ionic liquid mediated synthesis of mono- and bis-spirooxindole-hexahydropyrrolidines as cholinesterase inhibitors and their molecular docking studies.
    Kia Y; Osman H; Kumar RS; Basiri A; Murugaiyah V
    Bioorg Med Chem; 2014 Feb; 22(4):1318-28. PubMed ID: 24461561
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Naturally Occurring Genetic Variants of Human Acetylcholinesterase and Butyrylcholinesterase and Their Potential Impact on the Risk of Toxicity from Cholinesterase Inhibitors.
    Lockridge O; Norgren RB; Johnson RC; Blake TA
    Chem Res Toxicol; 2016 Sep; 29(9):1381-92. PubMed ID: 27551784
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel tetrahydroacridine derivatives with iodobenzoic acid moiety as multifunctional acetylcholinesterase inhibitors.
    Skibiński R; Czarnecka K; Girek M; Bilichowski I; Chufarova N; Mikiciuk-Olasik E; Szymański P
    Chem Biol Drug Des; 2018 Feb; 91(2):505-518. PubMed ID: 28944565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparing the effects of organic cosolvents on acetylcholinesterase and butyrylcholinesterase activity.
    Novales NA; Schwans JP
    Anal Biochem; 2022 Oct; 654():114796. PubMed ID: 35772490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.