These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 31135354)

  • 1. Adaptive Feature Recombination and Recalibration for Semantic Segmentation With Fully Convolutional Networks.
    Pereira S; Pinto A; Amorim J; Ribeiro A; Alves V; Silva CA
    IEEE Trans Med Imaging; 2019 Dec; 38(12):2914-2925. PubMed ID: 31135354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recalibrating Fully Convolutional Networks With Spatial and Channel "Squeeze and Excitation" Blocks.
    Roy AG; Navab N; Wachinger C
    IEEE Trans Med Imaging; 2019 Feb; 38(2):540-549. PubMed ID: 30716024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain Tumor Segmentation Based on Improved Convolutional Neural Network in Combination with Non-quantifiable Local Texture Feature.
    Deng W; Shi Q; Luo K; Yang Y; Ning N
    J Med Syst; 2019 Apr; 43(6):152. PubMed ID: 31016467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepNAT: Deep convolutional neural network for segmenting neuroanatomy.
    Wachinger C; Reuter M; Klein T
    Neuroimage; 2018 Apr; 170():434-445. PubMed ID: 28223187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging.
    Tang P; Liang Q; Yan X; Xiang S; Sun W; Zhang D; Coppola G
    Comput Methods Programs Biomed; 2019 Sep; 178():289-301. PubMed ID: 31416556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic pixel-wise weighting-based fully convolutional neural networks for left ventricle segmentation in short-axis MRI.
    Wang Z; Xie L; Qi J
    Magn Reson Imaging; 2020 Feb; 66():131-140. PubMed ID: 31465788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel end-to-end brain tumor segmentation method using improved fully convolutional networks.
    Li H; Li A; Wang M
    Comput Biol Med; 2019 May; 108():150-160. PubMed ID: 31005007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks.
    Ribalta Lorenzo P; Nalepa J; Bobek-Billewicz B; Wawrzyniak P; Mrukwa G; Kawulok M; Ulrych P; Hayball MP
    Comput Methods Programs Biomed; 2019 Jul; 176():135-148. PubMed ID: 31200901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning image-based spatial transformations via convolutional neural networks: A review.
    Tustison NJ; Avants BB; Gee JC
    Magn Reson Imaging; 2019 Dec; 64():142-153. PubMed ID: 31200026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison between two semantic deep learning frameworks for the autosomal dominant polycystic kidney disease segmentation based on magnetic resonance images.
    Bevilacqua V; Brunetti A; Cascarano GD; Guerriero A; Pesce F; Moschetta M; Gesualdo L
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 9):244. PubMed ID: 31830973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images.
    Naceur MB; Saouli R; Akil M; Kachouri R
    Comput Methods Programs Biomed; 2018 Nov; 166():39-49. PubMed ID: 30415717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.
    Lu X; Chen Y; Li X
    IEEE Trans Image Process; 2018 Jan.; 27(1):106-120. PubMed ID: 28952940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN).
    Iqbal S; Ghani MU; Saba T; Rehman A
    Microsc Res Tech; 2018 Apr; 81(4):419-427. PubMed ID: 29356229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor attention networks: Better feature selection, better tumor segmentation.
    Pang S; Du A; Orgun MA; Wang Y; Yu Z
    Neural Netw; 2021 Aug; 140():203-222. PubMed ID: 33780873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progressive multifocal leukoencephalopathy lesion and brain parenchymal segmentation from MRI using serial deep convolutional neural networks.
    Al-Louzi O; Roy S; Osuorah I; Parvathaneni P; Smith BR; Ohayon J; Sati P; Pham DL; Jacobson S; Nath A; Reich DS; Cortese I
    Neuroimage Clin; 2020; 28():102499. PubMed ID: 33395989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Scale Squeeze U-SegNet with Multi Global Attention for Brain MRI Segmentation.
    Dayananda C; Choi JY; Lee B
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34066042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semantic segmentation of mFISH images using convolutional networks.
    Pardo E; Morgado JMT; Malpica N
    Cytometry A; 2018 Jun; 93(6):620-627. PubMed ID: 29710381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discriminative Feature Network Based on a Hierarchical Attention Mechanism for Semantic Hippocampus Segmentation.
    Shi J; Zhang R; Guo L; Gao L; Ma H; Wang J
    IEEE J Biomed Health Inform; 2021 Feb; 25(2):504-513. PubMed ID: 32406848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Improved Full Convolutional Network Combined with Conditional Random Fields for Brain MR Image Segmentation Algorithm and its 3D Visualization Analysis.
    Zhai J; Li H
    J Med Syst; 2019 Jul; 43(9):292. PubMed ID: 31338693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convolutional bi-directional learning and spatial enhanced attentions for lung tumor segmentation.
    Xuan P; Jiang B; Cui H; Jin Q; Cheng P; Nakaguchi T; Zhang T; Li C; Ning Z; Guo M; Wang L
    Comput Methods Programs Biomed; 2022 Nov; 226():107147. PubMed ID: 36206688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.