These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 31135371)
21. A Simple and Stable Load Control Algorithm for Time-Varying Harvested Energy in Miniaturized Implantable Devices. Bae C Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1149-1154. PubMed ID: 31946097 [TBL] [Abstract][Full Text] [Related]
22. Inductively coupled, mm-sized, single channel optical neuro-stimulator with intensity enhancer. Khan W; Jia Y; Madi F; Weber A; Ghovanloo M; Li W Microsyst Nanoeng; 2019; 5():23. PubMed ID: 31231537 [TBL] [Abstract][Full Text] [Related]
23. Wirelessly Powered and Bi-Directional Data Communication System With Adaptive Conversion Chain for Multisite Biomedical Implants Over Single Inductive Link. Karimi MJ; Jin M; Zhou Y; Dehollain C; Schmid A IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):636-647. PubMed ID: 38285577 [TBL] [Abstract][Full Text] [Related]
24. A 27-Mbps, 0.08-mm Thimot J; Kim K; Shi C; Shepard KL Proc Cust Integr Circuits Conf; 2020 Mar; 2020():. PubMed ID: 34305311 [TBL] [Abstract][Full Text] [Related]
25. A Figure-of-Merit for Design and Optimization of Inductive Power Transmission Links for Millimeter-Sized Biomedical Implants. Ibrahim A; Kiani M IEEE Trans Biomed Circuits Syst; 2016 Dec; 10(6):1100-1111. PubMed ID: 28055825 [TBL] [Abstract][Full Text] [Related]
26. Towards high-resolution retinal prostheses with direct optical addressing and inductive telemetry. Ha S; Khraiche ML; Akinin A; Jing Y; Damle S; Kuang Y; Bauchner S; Lo YH; Freeman WR; Silva GA; Cauwenberghs G J Neural Eng; 2016 Oct; 13(5):056008. PubMed ID: 27529371 [TBL] [Abstract][Full Text] [Related]
27. A Wireless Power and Data Transfer IC for Neural Prostheses Using a Single Inductive Link With Frequency-Splitting Characteristic. Park Y; Koh ST; Lee J; Kim H; Choi J; Ha S; Kim C; Je M IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1306-1319. PubMed ID: 34914596 [TBL] [Abstract][Full Text] [Related]
28. A MedRadio-band low-energy-per-bit 4-Mbps CMOS OOK receiver for implantable medical devices. Chou CW; Liu LC; Wu CY Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5171-4. PubMed ID: 24110900 [TBL] [Abstract][Full Text] [Related]
29. Columnar transmitter based wireless power delivery system for implantable device in freely moving animals. Eom K; Jeong J; Lee TH; Lee SE; Jun SB; Kim SJ Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1859-62. PubMed ID: 24110073 [TBL] [Abstract][Full Text] [Related]
30. Safe inductive power transmission to millimeter-sized implantable microelectronics devices. Ibrahim A; Kiani M Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():817-20. PubMed ID: 26736387 [TBL] [Abstract][Full Text] [Related]
31. Optimal position of the transmitter coil for wireless power transfer to the implantable device. Jinghui Jian ; Stanaćević M Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6549-52. PubMed ID: 25571496 [TBL] [Abstract][Full Text] [Related]
32. An 11 μW Sub-pJ/bit Reconfigurable Transceiver for mm-Sized Wireless Implants. Yakovlev A; Jang JH; Pivonka D IEEE Trans Biomed Circuits Syst; 2016 Feb; 10(1):175-85. PubMed ID: 25616075 [TBL] [Abstract][Full Text] [Related]
33. A wireless implantable multichannel microstimulating system-on-a-chip with modular architecture. Ghovanloo M; Najafi K IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):449-57. PubMed ID: 17894278 [TBL] [Abstract][Full Text] [Related]
34. Toward a distributed free-floating wireless implantable neural recording system. Pyungwoo Yeon ; Xingyuan Tong ; Byunghun Lee ; Mirbozorgi A; Ash B; Eckhardt H; Ghovanloo M Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4495-4498. PubMed ID: 28269276 [TBL] [Abstract][Full Text] [Related]
35. An implantable optogenetic stimulator wirelessly powered by flexible photovoltaics with near-infrared (NIR) light. Jeong J; Jung J; Jung D; Kim J; Ju H; Kim T; Lee J Biosens Bioelectron; 2021 May; 180():113139. PubMed ID: 33714161 [TBL] [Abstract][Full Text] [Related]
36. Frequency Splitting Analysis and Compensation Method for Inductive Wireless Powering of Implantable Biosensors. Schormans M; Valente V; Demosthenous A Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27527174 [TBL] [Abstract][Full Text] [Related]
37. An Implantable Ultrasonically Powered System for Optogenetic Stimulation with Power-Efficient Active Rectifier and Charge-Reuse Capability. Rashidi A; Laursen K; Hosseini S; Huynh HA; Moradi F IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1362-1371. PubMed ID: 31647446 [TBL] [Abstract][Full Text] [Related]
38. Monolithically Defined Wireless Fully Implantable Nervous System Interfaces. Gutruf P Acc Chem Res; 2024 May; 57(9):1275-1286. PubMed ID: 38608256 [TBL] [Abstract][Full Text] [Related]
39. An Implantable Peripheral Nerve Recording and Stimulation System for Experiments on Freely Moving Animal Subjects. Lee B; Koripalli MK; Jia Y; Acosta J; Sendi MSE; Choi Y; Ghovanloo M Sci Rep; 2018 Apr; 8(1):6115. PubMed ID: 29666407 [TBL] [Abstract][Full Text] [Related]
40. Automatic frequency controller for power amplifiers used in bio-implanted applications: issues and challenges. Hannan MA; Hussein HA; Mutashar S; Samad SA; Hussain A Sensors (Basel); 2014 Dec; 14(12):23843-70. PubMed ID: 25615728 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]