BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31136167)

  • 1. Buckwheat Antifungal Protein with Biocontrol Potential To Inhibit Fungal ( Botrytis cinerea) Infection of Cherry Tomato.
    Wang C; Yuan S; Zhang W; Ng T; Ye X
    J Agric Food Chem; 2019 Jun; 67(24):6748-6756. PubMed ID: 31136167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifungal compound, methyl hippurate from Bacillus velezensis CE 100 and its inhibitory effect on growth of Botrytis cinerea.
    Maung CEH; Lee HG; Cho JY; Kim KY
    World J Microbiol Biotechnol; 2021 Aug; 37(9):159. PubMed ID: 34420104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea.
    Gao P; Qin J; Li D; Zhou S
    PLoS One; 2018; 13(1):e0190932. PubMed ID: 29320571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pomegranin, an antifungal peptide from pomegranate peels.
    Guo G; Wang HX; Ng TB
    Protein Pept Lett; 2009; 16(1):82-5. PubMed ID: 19149678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of combined Bacillomycin D and chitosan on growth of Rhizopus stolonifer and Botrytis cinerea and cherry tomato preservation.
    Lin F; Huang Z; Chen Y; Zhou L; Chen M; Sun J; Lu Z; Lu Y
    J Sci Food Agric; 2021 Jan; 101(1):229-239. PubMed ID: 32627181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological control of Botrytis cinerea on tomato plants using Streptomyces ahygroscopicus strain CK-15.
    Ge BB; Cheng Y; Liu Y; Liu BH; Zhang KC
    Lett Appl Microbiol; 2015 Dec; 61(6):596-602. PubMed ID: 26400053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial activity of sophorolipids produced by Starmerella bombicola against phytopathogens from cherry tomato.
    de O Caretta T; I Silveira VA; Andrade G; Macedo F; P C Celligoi MA
    J Sci Food Agric; 2022 Feb; 102(3):1245-1254. PubMed ID: 34378222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic effect of the combined bio-fungicides ε-poly-l-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes.
    Sun G; Yang Q; Zhang A; Guo J; Liu X; Wang Y; Ma Q
    Int J Food Microbiol; 2018 Jul; 276():46-53. PubMed ID: 29656220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytological and Gene Profile Expression Analysis Reveals Modification in Metabolic Pathways and Catalytic Activities Induce Resistance in
    Maqsood A; Wu C; Ahmar S; Wu H
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32660143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifungal action of chitosan in combination with fungicides in vitro and chitosan conjugate with gallic acid on tomatoes against Botrytis cinerea.
    Karpova N; Shagdarova B; Lunkov A; Il'ina A; Varlamov V
    Biotechnol Lett; 2021 Aug; 43(8):1565-1574. PubMed ID: 33974182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary Mode of Action of the Novel Sulfonamide Fungicide against
    Yan X; Chen S; Sun W; Zhou X; Yang D; Yuan H; Wang D
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163447
    [No Abstract]   [Full Text] [Related]  

  • 12. Dibenzylideneacetone Overcomes
    Niu X; Wang Z; Wang C; Wang H
    J Agric Food Chem; 2023 Dec; 71(49):19422-19433. PubMed ID: 37915214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory effect of lactoferrin against gray mould on tomato plants caused by Botrytis cinerea and possible mechanisms of action.
    Wang J; Xia XM; Wang HY; Li PP; Wang KY
    Int J Food Microbiol; 2013 Feb; 161(3):151-7. PubMed ID: 23333340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic Effect of Combined Application of a New Fungicide Fluopimomide with a Biocontrol Agent
    Ji X; Li J; Meng Z; Zhang S; Dong B; Qiao K
    Plant Dis; 2019 Aug; 103(8):1991-1997. PubMed ID: 31169087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antifungal effectiveness of fungicide and peroxyacetic acid mixture on the growth of Botrytis cinerea.
    Ayoub F; Ben Oujji N; Chebli B; Ayoub M; Hafidi A; Salghi R; Jodeh S
    Microb Pathog; 2017 Apr; 105():74-80. PubMed ID: 28192222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection and application of antifungal VOCs-producing yeasts as biocontrol agents of grey mould in fruits.
    Ruiz-Moyano S; Hernández A; Galvan AI; Córdoba MG; Casquete R; Serradilla MJ; Martín A
    Food Microbiol; 2020 Dec; 92():103556. PubMed ID: 32950150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control efficiency and expressions of resistance genes in tomato plants treated with ε-poly-l-lysine against Botrytis cinerea.
    Sun G; Wang H; Shi B; Shangguan N; Wang Y; Ma Q
    Pestic Biochem Physiol; 2017 Nov; 143():191-198. PubMed ID: 29183591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary Study on the Activity of Phycobiliproteins against
    Righini H; Francioso O; Di Foggia M; Quintana AM; Roberti R
    Mar Drugs; 2020 Nov; 18(12):. PubMed ID: 33260719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers.
    Kefi A; Ben Slimene I; Karkouch I; Rihouey C; Azaeiz S; Bejaoui M; Belaid R; Cosette P; Jouenne T; Limam F
    World J Microbiol Biotechnol; 2015 Dec; 31(12):1967-76. PubMed ID: 26347324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perillaldehyde Functions as a Potential Antifungal Agent by Triggering Metacaspase-Independent Apoptosis in Botrytis cinerea.
    Wang G; Wang Y; Wang K; Zhao H; Liu M; Liang W; Li D
    Microbiol Spectr; 2023 Jun; 11(3):e0052623. PubMed ID: 37191530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.