These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31136183)

  • 1. Incorporating Distance-Based Top-n-gram and Random Forest To Identify Electron Transport Proteins.
    Ru X; Li L; Zou Q
    J Proteome Res; 2019 Jul; 18(7):2931-2939. PubMed ID: 31136183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use Chou's 5-Steps Rule With Different Word Embedding Types to Boost Performance of Electron Transport Protein Prediction Model.
    Nguyen TT; Ho QT; Le NQ; Phan VD; Ou YY
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):1235-1244. PubMed ID: 32750894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Phage Viral Proteins With Hybrid Sequence Features.
    Ru X; Li L; Wang C
    Front Microbiol; 2019; 10():507. PubMed ID: 30972038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stack-VTP: prediction of vesicle transport proteins based on stacked ensemble classifier and evolutionary information.
    Chen Y; Gao L; Zhang T
    BMC Bioinformatics; 2023 Apr; 24(1):137. PubMed ID: 37029385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Random forest classification of Callicarpa nudiflora from WorldView-3 imagery based on optimized feature space].
    Shi TT; Zhang XB; Guo LP; Huang LQ
    Zhongguo Zhong Yao Za Zhi; 2019 Oct; 44(19):4073-4077. PubMed ID: 31872678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties.
    Le NQ; Nguyen TT; Ou YY
    J Mol Graph Model; 2017 May; 73():166-178. PubMed ID: 28285094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of FAD binding sites in electron transport proteins according to efficient radial basis function networks and significant amino acid pairs.
    Le NQ; Ou YY
    BMC Bioinformatics; 2016 Jul; 17():298. PubMed ID: 27475771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying Antioxidant Proteins by Using Amino Acid Composition and Protein-Protein Interactions.
    Zhai Y; Chen Y; Teng Z; Zhao Y
    Front Cell Dev Biol; 2020; 8():591487. PubMed ID: 33195258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Random Forest (RF) Wrappers for Waveband Selection and Classification of Hyperspectral Data.
    Poona NK; van Niekerk A; Nadel RL; Ismail R
    Appl Spectrosc; 2016 Feb; 70(2):322-33. PubMed ID: 26903567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Feature Extraction Method with Feature Selection to Identify Golgi-Resident Protein Types from Imbalanced Data.
    Yang R; Zhang C; Gao R; Zhang L
    Int J Mol Sci; 2016 Feb; 17(2):218. PubMed ID: 26861308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Feature and Algorithm Selection Method for Improving the Prediction of Protein Structural Class.
    Ni Q; Chen L
    Comb Chem High Throughput Screen; 2017; 20(7):612-621. PubMed ID: 28292249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selecting Essential MicroRNAs Using a Novel Voting Method.
    Ru X; Cao P; Li L; Zou Q
    Mol Ther Nucleic Acids; 2019 Dec; 18():16-23. PubMed ID: 31479921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AOPM: Application of Antioxidant Protein Classification Model in Predicting the Composition of Antioxidant Drugs.
    Zhai Y; Zhang J; Zhang T; Gong Y; Zhang Z; Zhang D; Zhao Y
    Front Pharmacol; 2021; 12():818115. PubMed ID: 35115948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Alzheimers disease related genes identification method based on multiple classifier integration.
    Miao Y; Jiang H; Liu H; Yao YD
    Comput Methods Programs Biomed; 2017 Oct; 150():107-115. PubMed ID: 28859826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ET-MSF: a model stacking framework to identify electron transport proteins.
    Wang Y; Pan Q; Liu X; Ding Y
    Front Biosci (Landmark Ed); 2022 Jan; 27(1):12. PubMed ID: 35090317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic frequency feature selection based approach for classification of motor imageries.
    Luo J; Feng Z; Zhang J; Lu N
    Comput Biol Med; 2016 Aug; 75():45-53. PubMed ID: 27253616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification.
    Lee HS; Hong H; Jung DC; Park S; Kim J
    Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. isGPT: An optimized model to identify sub-Golgi protein types using SVM and Random Forest based feature selection.
    Rahman MS; Rahman MK; Kaykobad M; Rahman MS
    Artif Intell Med; 2018 Jan; 84():90-100. PubMed ID: 29183738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of differential gene expression for microarray data using recursive random forest.
    Wu XY; Wu ZY; Li K
    Chin Med J (Engl); 2008 Dec; 121(24):2492-6. PubMed ID: 19187584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MFSC: Multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou's PseAAC components.
    Ahmad J; Hayat M
    J Theor Biol; 2019 Feb; 463():99-109. PubMed ID: 30562500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.