These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
433 related articles for article (PubMed ID: 31136218)
1. High-intensity exercise training enhances mitochondrial oxidative phosphorylation efficiency in a temperature-dependent manner in human skeletal muscle: implications for exercise performance. Fiorenza M; Lemminger AK; Marker M; Eibye K; Iaia FM; Bangsbo J; Hostrup M FASEB J; 2019 Aug; 33(8):8976-8989. PubMed ID: 31136218 [TBL] [Abstract][Full Text] [Related]
2. Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work. MacInnis MJ; Zacharewicz E; Martin BJ; Haikalis ME; Skelly LE; Tarnopolsky MA; Murphy RM; Gibala MJ J Physiol; 2017 May; 595(9):2955-2968. PubMed ID: 27396440 [TBL] [Abstract][Full Text] [Related]
3. Four weeks of speed endurance training reduces energy expenditure during exercise and maintains muscle oxidative capacity despite a reduction in training volume. Iaia FM; Hellsten Y; Nielsen JJ; Fernström M; Sahlin K; Bangsbo J J Appl Physiol (1985); 2009 Jan; 106(1):73-80. PubMed ID: 18845781 [TBL] [Abstract][Full Text] [Related]
4. Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle. Fiorenza M; Gunnarsson TP; Hostrup M; Iaia FM; Schena F; Pilegaard H; Bangsbo J J Physiol; 2018 Jul; 596(14):2823-2840. PubMed ID: 29727016 [TBL] [Abstract][Full Text] [Related]
5. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. Jacobs RA; Flück D; Bonne TC; Bürgi S; Christensen PM; Toigo M; Lundby C J Appl Physiol (1985); 2013 Sep; 115(6):785-93. PubMed ID: 23788574 [TBL] [Abstract][Full Text] [Related]
6. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations. Cochran AJ; Percival ME; Tricarico S; Little JP; Cermak N; Gillen JB; Tarnopolsky MA; Gibala MJ Exp Physiol; 2014 May; 99(5):782-91. PubMed ID: 24532598 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial adaptations to high intensity interval training in older females and males. Chrøis KM; Dohlmann TL; Søgaard D; Hansen CV; Dela F; Helge JW; Larsen S Eur J Sport Sci; 2020 Feb; 20(1):135-145. PubMed ID: 31145037 [No Abstract] [Full Text] [Related]
8. Endurance training increases the efficiency of rat skeletal muscle mitochondria. Zoladz JA; Koziel A; Woyda-Ploszczyca A; Celichowski J; Jarmuszkiewicz W Pflugers Arch; 2016 Oct; 468(10):1709-24. PubMed ID: 27568192 [TBL] [Abstract][Full Text] [Related]
9. Skeletal muscle mitochondrial protein synthesis and respiration in response to the energetic stress of an ultra-endurance race. Konopka AR; Castor WM; Wolff CA; Musci RV; Reid JJ; Laurin JL; Valenti ZJ; Hamilton KL; Miller BF J Appl Physiol (1985); 2017 Dec; 123(6):1516-1524. PubMed ID: 28883046 [TBL] [Abstract][Full Text] [Related]
10. Oxidative capacity and glycogen content increase more in arm than leg muscle in sedentary women after intense training. Nordsborg NB; Connolly L; Weihe P; Iuliano E; Krustrup P; Saltin B; Mohr M J Appl Physiol (1985); 2015 Jul; 119(2):116-23. PubMed ID: 26023221 [TBL] [Abstract][Full Text] [Related]
11. Mitochondria-specific antioxidant supplementation does not influence endurance exercise training-induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake. Shill DD; Southern WM; Willingham TB; Lansford KA; McCully KK; Jenkins NT J Physiol; 2016 Dec; 594(23):7005-7014. PubMed ID: 27501153 [TBL] [Abstract][Full Text] [Related]
12. Peripheral blood mononuclear cells do not reflect skeletal muscle mitochondrial function or adaptation to high-intensity interval training in healthy young men. Hedges CP; Woodhead JST; Wang HW; Mitchell CJ; Cameron-Smith D; Hickey AJR; Merry TL J Appl Physiol (1985); 2019 Feb; 126(2):454-461. PubMed ID: 30571281 [TBL] [Abstract][Full Text] [Related]
13. The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue. Larsen S; Danielsen JH; Søndergård SD; Søgaard D; Vigelsoe A; Dybboe R; Skaaby S; Dela F; Helge JW Scand J Med Sci Sports; 2015 Feb; 25(1):e59-69. PubMed ID: 24845952 [TBL] [Abstract][Full Text] [Related]
14. Adaptations in Mitochondrial Enzymatic Activity Occurs Independent of Genomic Dosage in Response to Aerobic Exercise Training and Deconditioning in Human Skeletal Muscle. Fritzen AM; Thøgersen FB; Thybo K; Vissing CR; Krag TO; Ruiz-Ruiz C; Risom L; Wibrand F; Høeg LD; Kiens B; Duno M; Vissing J; Jeppesen TD Cells; 2019 Mar; 8(3):. PubMed ID: 30871120 [TBL] [Abstract][Full Text] [Related]
16. Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Pesta D; Hoppel F; Macek C; Messner H; Faulhaber M; Kobel C; Parson W; Burtscher M; Schocke M; Gnaiger E Am J Physiol Regul Integr Comp Physiol; 2011 Oct; 301(4):R1078-87. PubMed ID: 21775647 [TBL] [Abstract][Full Text] [Related]
17. Adaptations to Speed Endurance Training in Highly Trained Soccer Players. Nyberg M; Fiorenza M; Lund A; Christensen M; Rømer T; Piil P; Hostrup M; Christensen PM; Holbek S; Ravnholt T; Gunnarsson TP; Bangsbo J Med Sci Sports Exerc; 2016 Jul; 48(7):1355-64. PubMed ID: 26885636 [TBL] [Abstract][Full Text] [Related]
18. A short period of high-intensity interval training improves skeletal muscle mitochondrial function and pulmonary oxygen uptake kinetics. Christensen PM; Jacobs RA; Bonne T; Flück D; Bangsbo J; Lundby C J Appl Physiol (1985); 2016 Jun; 120(11):1319-27. PubMed ID: 26846547 [TBL] [Abstract][Full Text] [Related]
19. Leg vascular and skeletal muscle mitochondrial adaptations to aerobic high-intensity exercise training are enhanced in the early postmenopausal phase. Nyberg M; Egelund J; Mandrup CM; Andersen CB; Hansen KMBE; Hergel IF; Valbak-Andersen N; Frikke-Schmidt R; Stallknecht B; Bangsbo J; Hellsten Y J Physiol; 2017 May; 595(9):2969-2983. PubMed ID: 28231611 [TBL] [Abstract][Full Text] [Related]