These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
433 related articles for article (PubMed ID: 31136218)
21. Low-Volume Speed Endurance Training with Reduced Volume Improves Short-Term Exercise Performance in Highly Trained Cyclists. Jeppesen JS; Wickham KA; Zeuthen M; Thomassen M; Jessen S; Hellsten Y; Hostrup M; Bangsbo J Med Sci Sports Exerc; 2024 Sep; 56(9):1709-1721. PubMed ID: 38650113 [TBL] [Abstract][Full Text] [Related]
22. Adaptations to high-intensity interval training in skeletal muscle require NADPH oxidase 2. Henríquez-Olguín C; Renani LB; Arab-Ceschia L; Raun SH; Bhatia A; Li Z; Knudsen JR; Holmdahl R; Jensen TE Redox Biol; 2019 Jun; 24():101188. PubMed ID: 30959461 [TBL] [Abstract][Full Text] [Related]
23. Skeletal Muscle Adaptive Responses to Different Types of Short-Term Exercise Training and Detraining in Middle-Age Men. Callahan MJ; Parr EB; Snijders T; Conceição MS; Radford BE; Timmins RG; Devlin BL; Hawley JA; Camera DM Med Sci Sports Exerc; 2021 Oct; 53(10):2023-2036. PubMed ID: 33867497 [TBL] [Abstract][Full Text] [Related]
24. Effect of increased and maintained frequency of speed endurance training on performance and muscle adaptations in runners. Skovgaard C; Almquist NW; Bangsbo J J Appl Physiol (1985); 2017 Jan; 122(1):48-59. PubMed ID: 27856713 [TBL] [Abstract][Full Text] [Related]
25. High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content. Granata C; Caruana NJ; Botella J; Jamnick NA; Huynh K; Kuang J; Janssen HA; Reljic B; Mellett NA; Laskowski A; Stait TL; Frazier AE; Coughlan MT; Meikle PJ; Thorburn DR; Stroud DA; Bishop DJ Nat Commun; 2021 Dec; 12(1):7056. PubMed ID: 34862379 [TBL] [Abstract][Full Text] [Related]
26. Elevated energy coupling and aerobic capacity improves exercise performance in endurance-trained elderly subjects. Conley KE; Jubrias SA; Cress ME; Esselman PC Exp Physiol; 2013 Apr; 98(4):899-907. PubMed ID: 23204291 [TBL] [Abstract][Full Text] [Related]
27. Mitochondrial Coupling and Contractile Efficiency in Humans with High and Low V˙O2peaks. Layec G; Bringard A; Le Fur Y; Micallef JP; Vilmen C; Perrey S; Cozzone PJ; Bendahan D Med Sci Sports Exerc; 2016 May; 48(5):811-21. PubMed ID: 26694849 [TBL] [Abstract][Full Text] [Related]
28. Effects of acute and chronic endurance exercise on mitochondrial uncoupling in human skeletal muscle. Fernström M; Tonkonogi M; Sahlin K J Physiol; 2004 Feb; 554(Pt 3):755-63. PubMed ID: 14634202 [TBL] [Abstract][Full Text] [Related]
29. Effect of conditioning and physiological hyperthermia on canine skeletal muscle mitochondrial oxygen consumption. Davis MS; Barrett MR J Appl Physiol (1985); 2021 May; 130(5):1317-1325. PubMed ID: 33661725 [TBL] [Abstract][Full Text] [Related]
30. 1996 J.B. Wolffe Memorial Lecture. Challenging beliefs: ex Africa semper aliquid novi. Noakes TD Med Sci Sports Exerc; 1997 May; 29(5):571-90. PubMed ID: 9140893 [TBL] [Abstract][Full Text] [Related]
31. Exercise training during chemotherapy preserves skeletal muscle fiber area, capillarization, and mitochondrial content in patients with breast cancer. Mijwel S; Cardinale DA; Norrbom J; Chapman M; Ivarsson N; Wengström Y; Sundberg CJ; Rundqvist H FASEB J; 2018 Oct; 32(10):5495-5505. PubMed ID: 29750574 [TBL] [Abstract][Full Text] [Related]
33. Preserved response of mitochondrial function to short-term endurance training in skeletal muscle of heart transplant recipients. Zoll J; N'Guessan B; Ribera F; Lampert E; Fortin D; Veksler V; Bigard X; Geny B; Lonsdorfer J; Ventura-Clapier R; Mettauer B J Am Coll Cardiol; 2003 Jul; 42(1):126-32. PubMed ID: 12849672 [TBL] [Abstract][Full Text] [Related]
34. Training-Induced Changes in Mitochondrial Content and Respiratory Function in Human Skeletal Muscle. Granata C; Jamnick NA; Bishop DJ Sports Med; 2018 Aug; 48(8):1809-1828. PubMed ID: 29934848 [TBL] [Abstract][Full Text] [Related]
35. Physiological adaptations to interval training and the role of exercise intensity. MacInnis MJ; Gibala MJ J Physiol; 2017 May; 595(9):2915-2930. PubMed ID: 27748956 [TBL] [Abstract][Full Text] [Related]
36. High-intensity exercise training ameliorates aberrant expression of markers of mitochondrial turnover but not oxidative damage in skeletal muscle of men with essential hypertension. Fiorenza M; Gunnarsson TP; Ehlers TS; Bangsbo J Acta Physiol (Oxf); 2019 Mar; 225(3):e13208. PubMed ID: 30339318 [TBL] [Abstract][Full Text] [Related]
37. Markedly improved skeletal muscle function with local muscle training in patients with chronic heart failure. Gordon A; Tyni-Lenné R; Persson H; Kaijser L; Hultman E; Sylvén C Clin Cardiol; 1996 Jul; 19(7):568-74. PubMed ID: 8818438 [TBL] [Abstract][Full Text] [Related]
38. Adaptations of skeletal muscle mitochondria to exercise training. Lundby C; Jacobs RA Exp Physiol; 2016 Jan; 101(1):17-22. PubMed ID: 26440213 [TBL] [Abstract][Full Text] [Related]