These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31136574)

  • 21. Control of the Aedes vectors of the dengue viruses and Wuchereria bancrofti: the French Polynesian experience.
    Lardeux F; Rivière F; Séchan Y; Loncke S
    Ann Trop Med Parasitol; 2002 Dec; 96 Suppl 2():S105-16. PubMed ID: 12625924
    [TBL] [Abstract][Full Text] [Related]  

  • 22. National progress in dengue vector control in Vietnam: survey for Mesocyclops (Copepoda), Micronecta (Corixidae), and fish as biological control agents.
    Nam VS; Yen NT; Holynska M; Reid JW; Kay BH
    Am J Trop Med Hyg; 2000 Jan; 62(1):5-10. PubMed ID: 10761718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laboratory scale evaluation of the feasibility of locally found bladderworts as biological agents to control dengue vector, Aedes aegypti in Sri Lanka.
    Gunathilaka N; Perera R; Amerasinghe D; Udayanga L
    BMC Plant Biol; 2023 Oct; 23(1):461. PubMed ID: 37789290
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aedes larval bionomics and implications for dengue control in the paradigmatic Jaffna peninsula, northern Sri Lanka.
    Surendran SN; Jayadas TTP; Thiruchenthooran V; Raveendran S; Tharsan A; Santhirasegaram S; Sivabalakrishnan K; Karunakaran S; Ponnaiah B; Gomes L; Malavige GN; Ramasamy R
    Parasit Vectors; 2021 Mar; 14(1):162. PubMed ID: 33736702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Native Argentinean cyclopoids (Crustacea: Copepoda) as predators of Aedes aegypti and Culex pipiens (Diptera: Culicidae) mosquitoes.
    Tranchida MC; Micieli MV; Maciá A; García JJ
    Rev Biol Trop; 2009 Dec; 57(4):1059-68. PubMed ID: 20073334
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diversity of midgut bacteria in larvae and females of Aedes aegypti and Aedes albopictus from Gampaha District, Sri Lanka.
    Ranasinghe K; Gunathilaka N; Amarasinghe D; Rodrigo W; Udayanga L
    Parasit Vectors; 2021 Aug; 14(1):433. PubMed ID: 34454583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of Novaluron-Based Autocidal Gravid Ovitraps to Control
    Withanage GP; Viswakula SD; Gunawardene YS; Hapugoda MD
    Biomed Res Int; 2020; 2020():9567019. PubMed ID: 32190692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inter-Population Similarities and Differences in Predation Efficiency of a Mosquito Natural Enemy.
    Cuthbert RN; Dalu T; Wasserman RJ; Weyl OLF; Froneman PW; Callaghan A; Dick JTA
    J Med Entomol; 2020 Nov; 57(6):1983-1987. PubMed ID: 32459349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Life history effects of prey choice by copepods: implications for biocontrol of vector mosquitoes.
    Dieng H; Boots M; Tuno N; Tsuda Y; Takagi M
    J Am Mosq Control Assoc; 2003 Mar; 19(1):67-73. PubMed ID: 12674538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes.
    Murugan K; Benelli G; Panneerselvam C; Subramaniam J; Jeyalalitha T; Dinesh D; Nicoletti M; Hwang JS; Suresh U; Madhiyazhagan P
    Exp Parasitol; 2015 Jun; 153():129-38. PubMed ID: 25819295
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Voltage-Gated Sodium Channel (
    Ranathunge T; Udayanga L; Sarasija S; Karunathilaka S; Nawarathne S; Rathnarajah H; Dulficar FF; Shafi FN; Dassanayake RS; Gunawardene YINS
    Biomed Res Int; 2021; 2021():8874092. PubMed ID: 34124263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water quality characteristics of breeding habitats in relation to the density of Aedes aegypti and Aedes albopictus in domestic settings in Gampaha district of Sri Lanka.
    Dalpadado R; Amarasinghe D; Gunathilaka N
    Acta Trop; 2022 May; 229():106339. PubMed ID: 35114170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrated management of waste tire mosquitoes utilizing Mesocyclops longisetus (Copepoda: Cyclopidae), Bacillus thuringiensis var. israelensis, Bacillus sphaericus, and methoprene.
    Tietze NS; Hester PG; Shaffer KR; Prescott SJ; Schreiber ET
    J Am Mosq Control Assoc; 1994 Sep; 10(3):363-73. PubMed ID: 7807078
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elimination of dengue by community programs using Mesocyclops(Copepoda) against Aedes aegypti in central Vietnam.
    Vu SN; Nguyen TY; Tran VP; Truong UN; Le QM; Le VL; Le TN; Bektas A; Briscombe A; Aaskov JG; Ryan PA; Kay BH
    Am J Trop Med Hyg; 2005 Jan; 72(1):67-73. PubMed ID: 15728869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predatory potential of Nepa cinerea against mosquito larvae in laboratory conditions.
    Singh RK; Singh SP
    J Commun Dis; 2004 Jun; 36(2):105-10. PubMed ID: 16295671
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biological control of Aedes mosquito larvae with carnivorous aquatic plant, Utricularia macrorhiza.
    Couret J; Notarangelo M; Veera S; LeClaire-Conway N; Ginsberg HS; LeBrun RL
    Parasit Vectors; 2020 Apr; 13(1):208. PubMed ID: 32317006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Salinity-tolerant larvae of mosquito vectors in the tropical coast of Jaffna, Sri Lanka and the effect of salinity on the toxicity of Bacillus thuringiensis to Aedes aegypti larvae.
    Jude PJ; Tharmasegaram T; Sivasubramaniyam G; Senthilnanthanan M; Kannathasan S; Raveendran S; Ramasamy R; Surendran SN
    Parasit Vectors; 2012 Nov; 5():269. PubMed ID: 23174003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Climate Change May Restrict the Predation Efficiency of Mesocyclops aspericornis (Copepoda: Cyclopidae) on Aedes aegypti (Diptera: Culicidae) Larvae.
    Tuno N; Phong TV; Takagi M
    Insects; 2020 May; 11(5):. PubMed ID: 32423079
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of Caribbean strains of Macrocyclops and Mesocyclops (Cyclopoida:Cyclopidae) as biological control tools for the dengue vector Aedes aegypti.
    Rawlins SC; Martinez R; Wiltshire S; Clarke D; Prabhakar P; Spinks M
    J Am Mosq Control Assoc; 1997 Mar; 13(1):18-23. PubMed ID: 9152870
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Larval development of Aedes aegypti and Aedes albopictus in peri-urban brackish water and its implications for transmission of arboviral diseases.
    Ramasamy R; Surendran SN; Jude PJ; Dharshini S; Vinobaba M
    PLoS Negl Trop Dis; 2011 Nov; 5(11):e1369. PubMed ID: 22132243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.