These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 3113669)

  • 21. Physiological properties, time of development, and central projection are correlated in the wing mechanoreceptors of Drosophila.
    Dickinson MH; Palka J
    J Neurosci; 1987 Dec; 7(12):4201-8. PubMed ID: 3694271
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pattern formation in the wing veins of the fused mutant (Drosophila melanogaster).
    Fausto-Sterling A
    Dev Biol; 1978 Apr; 63(2):358-69. PubMed ID: 416982
    [No Abstract]   [Full Text] [Related]  

  • 23. Variation in wing length in Eurasian natural populations of Drosophila melanogaster.
    Imasheva AG; Bubli OA; Lazebny OE
    Heredity (Edinb); 1994 May; 72 ( Pt 5)():508-14. PubMed ID: 8014061
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Mechanisms for High Hydrostatic Pressure-Induced Wing Mutagenesis in Drosophila melanogaster.
    Wang H; Wang K; Xiao G; Ma J; Wang B; Shen S; Fu X; Zou G; Zou B
    Sci Rep; 2015 Oct; 5():14965. PubMed ID: 26446369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Segmental determination of sensory neurons in Drosophila.
    Ghysen A; Janson R; Santamaria P
    Dev Biol; 1983 Sep; 99(1):7-26. PubMed ID: 6413279
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Projections of leg proprioceptors within the CNS of the fly Phormia in relation to the generalized insect ganglion.
    Merritt DJ; Murphey RK
    J Comp Neurol; 1992 Aug; 322(1):16-34. PubMed ID: 1430308
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural projection patterns from homeotic tissue of Drosophila studied in bithorax mutants and mosaics.
    Palka J; Lawrence PA; Hart HS
    Dev Biol; 1979 Apr; 69(2):549-75. PubMed ID: 108163
    [No Abstract]   [Full Text] [Related]  

  • 28. Shaggy (zeste-white 3) and the formation of supernumerary bristle precursors in the developing wing blade of Drosophila.
    Blair SS
    Dev Biol; 1992 Aug; 152(2):263-78. PubMed ID: 1644220
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gyroscopic sensing in the wings of the hawkmoth Manduca sexta: the role of sensor location and directional sensitivity.
    Hinson BT; Morgansen KA
    Bioinspir Biomim; 2015 Oct; 10(5):056013. PubMed ID: 26440705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wing-pitch modulation in maneuvering fruit flies is explained by an interplay between aerodynamics and a torsional spring.
    Beatus T; Cohen I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022712. PubMed ID: 26382437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular basis of morphological variation and temperature-related plasticity in Drosophila melanogaster strains with divergent wing shapes.
    Torquato LS; Mattos D; Matta BP; Bitner-Mathé BC
    Genetica; 2014 Dec; 142(6):495-505. PubMed ID: 25326715
    [TBL] [Abstract][Full Text] [Related]  

  • 32. dumpy interacts with a large number of genes in the developing wing of Drosophila melanogaster.
    Carmon A; Topbas F; Baron M; MacIntyre RJ
    Fly (Austin); 2010; 4(2):117-27. PubMed ID: 20473031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bristles reduce the force required to 'fling' wings apart in the smallest insects.
    Jones SK; Yun YJ; Hedrick TL; Griffith BE; Miller LA
    J Exp Biol; 2016 Dec; 219(Pt 23):3759-3772. PubMed ID: 27903629
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Geographic differentiation in wing shape in Drosophila melanogaster.
    Imasheva AG; Bubli OA; Lazebny OE; Zhivotovsky LA
    Genetica; 1995; 96(3):303-6. PubMed ID: 8522169
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microarray analysis of replicate populations selected against a wing-shape correlation in Drosophila melanogaster.
    Weber KE; Greenspan RJ; Chicoine DR; Fiorentino K; Thomas MH; Knight TL
    Genetics; 2008 Feb; 178(2):1093-108. PubMed ID: 18245369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Persistent larval sensory neurones are required for the normal development of the adult sensory afferent projections in Drosophila.
    Williams DW; Shepherd D
    Development; 2002 Feb; 129(3):617-24. PubMed ID: 11830563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ligand-dependent de-repression via EcR/USP acts as a gate to coordinate the differentiation of sensory neurons in the Drosophila wing.
    Schubiger M; Carré C; Antoniewski C; Truman JW
    Development; 2005 Dec; 132(23):5239-48. PubMed ID: 16267093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thoracic duplications in the mutant wingless of Drosophila and their effect on muscles and nerves.
    Deak II
    Dev Biol; 1978 Oct; 66(2):422-41. PubMed ID: 100357
    [No Abstract]   [Full Text] [Related]  

  • 39. Central afferent projections of proprioceptive sensory neurons in Drosophila revealed with the enhancer-trap technique.
    Smith SA; Shepherd D
    J Comp Neurol; 1996 Jan; 364(2):311-23. PubMed ID: 8788252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The costae presenting in high-temperature-induced vestigial wings of Drosophila: implications for anterior wing margin formation.
    Yang D
    J Genet; 2007 Apr; 86(1):51-7. PubMed ID: 17656849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.